5. Materiał badań i metodyka

5.1. Materiał do badań

Materiałem wyjściowym był przewalcowany na gorąco wlewek ze stopu CuTi4 do grubości 3,0 mm. Skład chemiczny zawarto w tablicy 3.

Cu	Ti	Zn	Р	Pb	Sn	Mn	Ni	Sb	Bi	As	Cd
95,83	3,95	0,13	0,065	0,003	0,009	0,030	0,01	0,001	0,001	0,001	0,001

Tablica 3. Skład chemiczny stopu CuTi4

Przewalcowane na gorąco pasma, po oczyszczeniu powierzchni (trawienie, płukanie, suszenie) pocięto na próbki (o wymiarach 3×25×30 mm) i przeznaczono je do dalszych badań. Próbki poddano dalszej obróbce według schematu:

I wariant

Wygrzewanie próbek w temperaturze 900°C przez 1 godzinę w komorowym piecu elektrycznym, oporowym. Nagrzane próbki po wyjęciu z komory pieca były intensywnie chłodzone w wodzie. Czas po wyjęciu próbki z pieca do zanurzenia w wodzie wynosił do 2 sekund. Po ochłodzeniu część próbek przeznaczono do badań własności po przesycaniu a pozostałą część starzono w temperaturze 450, 500, 550 i 600°C przez 1, 5, 15, 30, 60, 120 i 420 minut. Tak przygotowany materiał był przedmiotem dalszych badań.

II wariant

Przesycone próbki po ostudzeniu w wodzie walcowano na zimno stosując 50% gniot $(3,0 \rightarrow 1,5 \text{ mm})$. Proces starzenia prowadzono stosując te same parametry jak w wariancie I.

Otrzymane próbki stanowiły przedmiot badań zgodnie z ustalonym zakresem prac (rys. 10).

5.2. Metodyka badań

Do opisu kinetyki mechanizmów odpowiedzialnych za zmiany mikrostruktury w zależności od zastosowanej obróbki cieplnej lub cieplno-plastycznej (wg wariantów I i II) wykorzystano

wyniki badań zmian konduktywności elektrycznej oraz twardości w powiązaniu z badaniami zmian mikrostruktury.

Analiza mikroskopowa zgładów metalograficznych na mikroskopie świetlnym

Próbki zostały zainkludowane w żywicy fenolowej, następnie szlifowane na papierze ściernym o coraz mniejszej ziarnistości. Tak wstępnie przygotowane zgłady wypolerowano przy użyciu zawiesiny Al₂O₃, którą zastąpiono zawiesiną diamentową o ziarnistości 1µm. Dalej zgłady poddano trawieniu w roztworze: 2g chromianu potasu K₂Cr₂O₇, 100 cm³ wody destylowanej, 4 cm³ roztworu chlorku sodu NaCl, 8 cm³ kwasu siarkowego H₂SO₄. Zgłady poddawano wielokrotnemu przemiennemu polerowaniu i trawieniu w celu otrzymania właściwych obrazów mikrostruktury.

Zgłady metalograficzne obserwowano na mikroskopie świetlnym Olympus przy wykorzystaniu powiększeń 50, 100, 200, 500, 1000, 2000x.

Badania struktury

Rentgenowską analizę fazową wykonano na dyfraktometrze X'Pert firmy Panalytical stosując filtrowane promieniowanie lampy z anodą kobaltową. Krok pomiarowy wynosił 0,05 a czas zliczeń impulsów 10 s.

Badania mikrostruktury i dezorientacji ziarn

Badania mikrostruktury i dezorientacji ziarn wykonano na skaningowym mikroskopie elektronowym firmy (SEM) ZEISS SUPRA 25 z wykorzystaniem metody EDS i EBSD oraz za pomocą transmisyjnego mikroskopu elektronowego (TEM) JEOL 3010. Badania mikrostruktury w trybie wysokiej rozdzielczości wykonano z wykorzystaniem skaningowo-transmisyjnego mikroskopu elektronowego (STEM) Titan 80-300 firmy FEI. Próbki do obserwacji na TEM jak i na SEM w trybie EBSD przygotowano na polerce jonowej firmy GATAN.

Pomiar twardości

Pomiar twardości wykonano na twardościomierzu Zwick/ZHR metodą Rockwella. Obciążenie wgłębnika wynosiło 590 N, natomiast średnica wgłębnika 1/16 cala. Twardościomierz jest wyposażony w moduł elektroniczny do obliczania twardości HV.

Pomiar konduktywności elektrycznej

Do badań konduktywności elektrycznej próbek użyto urządzenia Sigmatest Forstera.

Stopień przemiany obliczono wg [33]:

$$y = \frac{\rho_0 - \rho_t}{\rho_0 - \rho(E_t)}$$
(4)

y - postęp procesu wydzielania określony na drodze pomiarów pośrednich,

ρ₀ - elektryczna oporność właściwa próbek po przesycaniu,

ρt - oporność właściwa po określonym czasie starzenia przy stałej temperaturze,

 $\rho(E_t)$ - elektryczna oporność właściwa dla warunków równowagi (dla y=1), po zakończeniu procesu wydzielania w strukturze.

Do obliczeń przygotowano następujące dane:

 $\rho_0 = 0.4 \ \Omega mm^2/m \ ,$

 $\rho(E_t) = 0.083 \ \Omega mm^2/m,$

Na podstawie równania (4) obliczono y=0,6321. Za pomocą równania (3) wyznaczono stałe czasowe niezbędne do opracowania wykresów opisujących kinetykę wydzielania i rekrystalizacji w badanym materiale:

$logt = 0,96 \le 450^{\circ}C;$	t = 9,2 min.
$logt = 0,87 \le 500^{\circ}C;$	t = 7,5 min.
logt = 0,87 w 550°C;	t = 7,5 min.
logt = 0,66 w 600°C;	t = 4,6 min.
State error dla $y = 0$	6221 Dla etc

Stała czasowa dla y = 0,6321. Dla stopu walcowanego na zimno po przesycaniu:

$logt = 1,15 w 450^{\circ}C;$	t = 14,1 min.
$logt = 1,02 \le 500^{\circ}C;$	t = 10,5 min.
$logt = 0,42 \le 550^{\circ}C;$	t = 2,6 min.
$logt = 0,61 \le 600^{\circ}C;$	t = 4,1 min.

Badania profilu wytarcia

Badania geometrii profilu wytarcia zrealizowano za pomocą mikroskopu konfokalnego LSM Exciter 5 firmy ZEISS z systemem obserwacji przy wykorzystaniu 4 laserów i o długości fal świetlnych od 405 do 633 nm oraz systemem akwizycji i analizy obrazu ZEN i Axio Vision.

Badanie odporności na ścieranie

Badanie odporności na ścieranie wykonano na trybometrze firmy Taylor Hobson.

Przeciwpróbka w kształcie kulki o średnicy 6 mm wykonana była z Al₂O₃ a obciążenie wynosiło 10 N. Każdy pomiar składał się z 5000 cykli po 7,2 mm. Łączny dystans, który za każdym razem wykonywała próbka wynosił 36 m.

Opracowanie wykresów CTP i COP

Wykresy Czas-Temperatura-Przemiana (CTP) oraz Czas-Odkształcenie-Przemiana (COP) opracowano na podstawie wyników pomiaru twardości oraz konduktywności elektrycznej.

Modelowanie komputerowe twardości za pomocą sieci neuronowych

Do analizy zależności pomiędzy składem chemicznym stopów, parametrami obróbki cieplnej i plastycznej na zimno a otrzymanym wynikiem pomiaru twardości zastosowano narzędzia analizy danych w programie MS Excel oraz sztuczne sieci neuronowe z wykorzystaniem pakietu Statistica Neural Network PL 4.0 F firmy StatSoft.

W projektowaniu dla każdej sieci ustalono następujące parametry:

- Funkcja błędu suma kwadratów
- Funkcja aktywacji: I warstwa funkcja liniowa, II warstwa funkcja logistyczna, III warstwa funkcja liniowa z nasyceniem

Zbiór wejściowy został losowo podzielony na następujące zbiory:

- uczący (281 przypadków),
- walidacyjny (140 przypadków),
- testowy (141 przypadków).

W strukturze każdej z analizowanych sieci ustalono 11 neuronów wejściowych, z czego 6 odpowiadających pierwiastkom stopowym występującym w badanych stopach, oraz 5 odpowiadających parametrom obróbki cieplnej i odkształceniu. Wynikowy neuron wyjściowy przedstawia szukaną wartość twardości.

Poszukiwanie optymalnej sieci neuronowej ograniczono do:

- sieci o radialnych funkcjach bazowych,
- sieci realizujące regresję uogólnioną,
- perceptron wielowarstwowy.

Liczba warstw ukrytych, liczba węzłów znajdujących się w tych warstwach, wartości wag, wartości progowe, metoda i parametry uczenia, czyli parametrów architektury projektowanej sieci został dokonany uwzględniając wpływ tych wielkości na wartości wskaźników oceny jakości projektowanej sieci. Modelowanie przeprowadzono na podstawie 562 przypadków testowych.