4. Wyniki badań

4.1. Opracowanie procedury wprowadzenia nanocząstek srebra do osnowy silikonowej

Widma FT IR uzyskane dla Molloplast-B, UGB i UGK przedstawiono na rysunku 4.1. i rysunku 4.2. Stwierdzono, że widma FT IR wszystkich badanych polimerów wskazują na typową dla poli(dimetylosiloksanów) strukturę. Widoczne były następujące, charakterystyczne dla silikonów, pasma absorpcyjne [215, 216]:

- 2967,24 cm⁻¹ i 2909,36 cm⁻¹ pochodzące od drgań rozciągających wiązania C-H w grupie CH₃,
- 1414,16 cm⁻¹, pochodzące od asymetrycznych drgań deformacyjnych grupy Si-CH₃,
- 1267,54 cm⁻¹, pochodzące od symetrycznych drgań deformacyjnych grupy Si-CH₃,
- 1111,27 cm⁻¹ i 1036,02 cm⁻¹ pochodzące od asymetrycznych drgań rozciągających grupy Si-O-Si,
- 812,23 cm⁻¹, pochodzące od deformacyjnych drgań wahadłowych grupy CH₃-Si-CH₃,
- na widmie FT IR UGB przy 2167 cm⁻¹ znajduje się pasmo pochodzące od drgań wiązania Si-H.

Widmo ¹H NMR uzyskane dla tworzywa Molloplast-B przedstawiono na rysunku 4.3. Zarejestrowane sygnały zestawiono w tablicy 4.1. Przy $\delta = 0,071$ ppm widoczny był silny sygnał pochodzący od grup metylowych sąsiadujących z atomem krzemu, który na rysunku 4.1 i w tablicy 4.1 oznaczono jako A. Wskazuje to, że polimer w badanym materiale jest poli(dimetylosiloksanem) (PDMS), którego strukturę przedstawiono wzorem 4.1.

$$A \\ CH_3 \\ | \\ CH_3 \\ CH_3 \\ A$$

$$(4.1)$$

Na widmie znajdowały się również sygnały $\delta = 7,53$ ppm, $\delta = 7,68$ ppm (-CH=) oraz $\delta = 8,08$ ppm, pochodzące od nadtlenku benzoilu (BPO), którego strukturę przedstawiono wzorem 4.2.

(4.2)

Sygnał przy 7,26 ppm pochodzi od rozpuszczalnika, w którym wykonywano pomiar (CDCl₃).

Rysunek 4.1. Widmo FT IR uzyskane dla Molloplast-B

Rysunek 4.2. Widma FT IR uzyskane dla Ufi Gel Baza (UGB) i Ufi Gel Katalizator (UGK)

Oznaczenie	Grupa	Przesunięcie chemiczne δ, ppm
А	CH3	0,071
*	H ₂ O (z rozpuszczalnika)	1,23
*	CDCl ₃	7,26
В	-CH=	7,53
C	-CH=	7,68
D	-CH=	8,08

Tablica 4.1. Sygnaly obecne na widmie ¹*H NMR Molloplast-B*

Rysunek 4.3. Widmo ¹H NMR uzyskane dla tworzywa Molloplast-B (a) oraz fragment widma z sygnałami pochodzącymi od BPO (b)

Ufi Gel Baza	Ufi Gel Katalizator	Grupa	Przesunięcie chemiczne δ, ppm
А	А	Si–CH ₃	0,07
*	*	woda z rozpuszczalnika	1,23
С	-	Si-H	4,70
D	D	-CH=(Si-CH=CH ₂)	5,69-5,77
Е	Е	-CH=(Si-CH=CH ₂)	5,90-5,96
F	F	-CH=(Si-CH=CH ₂)	6,07-6,19
*	*	CDCl ₃	7,26

Tablica 4.2. Sygnaly obecne na widmach Ufi Gel Baza i Ufi Gel Katalizator

Widma ¹H NMR uzyskane dla obydwóch składników UG przedstawiono na rysunku 4.4. W tablicy 4.2 zestawiono sygnały obecne na widmach.

Dla UGB i UGC widoczny był silny sygnał (A) przy δ =0,072 ppm pochodzący od grup metylowych sąsiadujących z atomem krzemu (wzór 4.3 oraz wzory od 4.4 do 4.6). Wskazuje to na poli(dimetylosiloksanową) strukturę obydwóch składników tworzywa.

$$H_{2}C = CH - \underset{l}{\overset{\text{CH}_{3}}{\underset{\text{CH}_{3}}{\underset{\text{CH}_{3}}{\underset{\text{CH}_{3}}{\overset{\text{CH}_{3}}{\underset{1}}{\underset{1}$$

Rysunek 4.4. Widma ¹H NMR składników tworzywa UGB (a) i UGK (b)

Obecny na widmie UGB sygnał (B) przy δ =4,70 ppm odpowiada protonowi sąsiadującemu z atomem krzemu. Oznacza to, że w UGB mogą znajdować się struktury przedstawione wzorami 4.4 lub 4.5 i 4.6.

$$H_{2}C = CH - \underset{l}{\overset{CH_{3}}{\underset{H_{2}}{\text{CH}_{3}}}} - \underset{l}{\overset{CH_{3}}{\underset{H_{3}}{\text{CH}_{3}}}} - \underset{L}{\overset{CH_{3}}{\underset{H_{3}}{\overset{CH_{3}}{\underset{H_{3}}{\overset{CH_{3}}{\underset{H_{3}}{$$

$$H_{2}C = CH_{3} \qquad \begin{pmatrix} CH_{3} \\ I \\ I \\ H_{2}C = CH - Si - O + Si - O + Si - O + Si - O + Si - CH_{2} \\ I \\ CH_{3} \qquad \begin{pmatrix} I \\ I \\ H \\ H \\ H \\ \end{pmatrix}_{a} \begin{pmatrix} CH_{3} \\ I \\ CH_{3} \\ CH_{3} \\ \end{pmatrix}_{b} \begin{pmatrix} CH_{3} \\ I \\ CH_{3} \\ CH_{3} \\ \end{pmatrix}_{b} CH_{3} \qquad (4.5)$$

i

$$H_{2}C = CH - \underset{l}{\overset{CH_{3}}{\underset{CH_{3}}{\mid}}} - \underset{l}{\overset{CH_{3}}{\underset{CH_{3}}{\mid}}} - \underset{cH_{3}}{\overset{CH_{3}}{\underset{CH_{3}}{\mid}}} - \underset{cH_{3}}{\overset{CH_{3}}{\underset{CH_{3}}{\mid}}} - \underset{cH_{3}}{\overset{CH_{3}}{\underset{CH_{3}}{\mid}}} - \underset{cH_{3}}{\overset{CH_{3}}{\underset{CH_{3}}{\mid}}} - \underset{cH_{3}}{\overset{CH_{3}}{\underset{CH_{3}}{\mid}}} - \underset{cH_{4}}{\overset{CH_{3}}{\underset{CH_{3}}{\mid}}} - \underset{cH_{4}}{\overset{CH_{4}}{\underset{CH_{3}}{\mid}}} - \underset{cH_{4}}{\overset{CH_{4}}{\underset{CH_{3}}{\mid}}} - \underset{cH_{4}}{\overset{CH_{4}}{\underset{CH_{3}}{\mid}}} - \underset{cH_{4}}{\overset{CH_{4}}{\underset{CH_{3}}{\mid}}} - \underset{cH_{4}}{\overset{CH_{4}}{\underset{CH_{4}}{\mid}}} - \underset{cH_{4}}{\overset{CH_{4}}{\underset{CH_{4}}{\mid}}} - \underset{cH_{4}}{\overset{CH_{4}}{\underset{CH_{4}}{\mid}}} - \underset{cH_{4}}{\overset{CH_{4}}{\underset{CH_{4}}{\underset{CH_{4}}{\mid}}} - \underset{cH_{4}}{\overset{CH_{4}}{\underset{CH_{4}}{\mid}}} - \underset{CH_{4}}{\overset{CH_{4}}{\underset{CH_{4}}{\underset{CH_{4}}{\atop}}} - \underset{CH_{4}}{\overset{CH_{4}}{\underset{CH_{4}}{\underset{CH_{4}}{\atop}}} - \underset{CH_{4}}{\overset{CH_{4}}{\underset{CH_{4}$$

Na widmach obydwóch składników stwierdzono również obecność trzech multipletów (E,D,C) w zakresie δ od 5,69 do 6,19 ppm pochodzących od wiązań podwójnych grupy winylowej (wzór 4.7).

Obecność grup winylowych potwierdzono wyłącznie na podstawie analizy widm ¹H NMR. W oparciu o analizę FT IR nie można tego stwierdzić ze względu na zbyt niską intensywność pasm absorpcyjnych pochodzących od drgań grupy winylowej.

Wprowadzenie do łańcucha polidimetylosiloksanowego ugrupowań Si-H daje możliwość sieciowania w wyniku reakcji grup –CH=CH₂ z grupą Si–H (wzór 4.8) [211].

Reakcja addycji związków krzemoorganicznych, zawierających wiązanie Si-H do wiązań wielokrotnych, powszechnie zwana reakcją hydrosililowania jest jedną z najważniejszych przemian katalitycznych, jakim ulegają związki krzemu. Wykorzystanie reakcji hydrosililowania poliwinylosiloksanów ma miejsce zwłaszcza w syntezie wielu odmian elastomerów silikonowych i innych silikonów. Sieciowanie prowadzone jest w obecności katalizatorów, będących najczęściej związkami platyny, takimi jak kwas heksachloroplatynowy H₂PtCl₆ (katalizator Speiera), związki kompleksowe platyny typu katalizatora Karstedta lub PtO₂ [211-214]. Katalizator tej reakcji prawdopodobnie znajduje się w składniku UGK. Jego rodzaju (lub też rodzajów) i udziału nie udało się ustalić przy pomocy zastosowanych technik badawczych, prawdopodobnie ze względu na jego niewielki udział. Sygnał przy δ =1,23 pochodzi od wody. Sygnał * przy δ =7.26 ppm pochodzi od rozpuszczalnika, w którym wykonywano pomiar (CDCl₃).

Wyniki badań rozpuszczalności nieusieciowanego Molloplast-B zestawiono w tablicy 4.3. Spośród 21 rozpuszczalników tylko 8 oddziaływało na Molloplast-B. W 1,4-dioksanie próbka słabo pęczniała, co może świadczyć o rozpuszczaniu się niektórych składników tworzywa. Próbka rozpuszczała się bardzo powoli w heksanie. Po 24 h rozpuściła się w około 50 %. Przedłużenie rozpuszczania o kolejne 48 h pozwoliło rozpuścić około 70 % próbki, po czym proces ustał. W ksylenie próbka rozpuściła się w około 50 %. W chlorku metylenu, toluenie i eterze dietylowym powstał mętny roztwór, aczkolwiek około ¼ próbki pozostała nierozpuszczona. Lepsza rozpuszczalność zaobserwowano w tetrahydrofuranie, jednak w tym przypadku na dnie kolby powstała część materiału w postaci nierozpuszczonych "strzepków". Najlepszą rozpuszczalność zaobserwowano w chloroformie, w którym całkowicie rozpuszczono 0,25 g tworzywa (udział 0,5 %). Po zwiekszeniu masy próbki tworzywa do 0,5 g rozpuszczono około 75 % próbki. We wszystkich przypadkach nierozpuszczone części próbek Molloplast-B traciły charakterystyczną dla tego tworzywa plastyczność, co dowodzi, że składniki tworzywa rozpuszczały się nierównomiernie. W przypadku skojarzeń rozpuszczalnik-Molloplast-B, dla których odnotowano częściowa lub całkowita rozpuszczalność, zaobserwowano zachodzącą w roztworach sedymentacje. Ujawniała się ona w chwile po zaprzestaniu mieszania za pomocą mieszadła magnetycznego i kończyła się po 30-60 minutach (rys. 4.5a,b). Wytracający się osad po przesączeniu i wysuszeniu okazywał się być suchym i kruchym proszkiem (rys. 4.5c). Przeprowadzone próbne odparowanie rozpuszczalnika 0,5 % roztworu Molloplast-B w chloroformie wykazało, że pozostały na dnie kolby materiał w znacznej mierze utracił

L.p.	Rozpuszczalnik	Stopień rozpuszczenia tworzywa po 24 h
1	N-metylo-2-pirolidon	NR
2	Benzoesan benzylu	NR
3	Benzoesan etylu	NR
4	Trójoctan glicerylu	NR
5	Dimetylosulfotlenek	NR
6	Aceton	NR
7	Chlorek metylenu	CR
8	Chloroform	R
9	Toluen	CR
10	Ksylen	CR
11	Eter monoetylowy glikolu etylenowego	NR
12	1-butanol	NR
13	Metanol	NR
14	Tetrahydrofuran	CR
15	1,4-dioksan	CR
16	Eter dietylowy	CR
17	Heksan	CR
18	Heptan	NR
19	Mleczan etylu	NR
20	1,3 dioksolan	NR
21	Dimetyloformamid	NR

Tablica 4.3. Wyniki badań rozpuszczalności Molloplast-B. "NR" - brak rozpuszczalności; "CR" – częściowo rozpuszcza się, R" – rozpuszcza się

Rysunek 4.5. Molloplast-B w tetrahydrofuranie bezpośrednio po 24 h mieszania za pomocą mieszadła magnetycznego (a), po ok 40 min od zakończenia mieszania (b) oraz materiał w postaci proszku pozostały na sączku (c)

pierwotną konsystencję i własności plastyczne, pozwalające na formowanie nieusieciowanego tworzywa. Na podstawie przeprowadzonych badań tworzywo Molloplast-B uznano za trudno

		Stopień rozpusz	Stopień rozpuszczenia tworzywa		
In	Doznuszozolnik	ро 2	24 h		
г. р.	Közpüszczannk	LIF Cal Daza	Ufi Gel		
		Uli Gel Baza	Katalizator		
1	N-metylo-2-pirolidon	NR	NR		
2	Benzoesan benzylu	NR	NR		
3	Benzoesan etylu	NR	NR		
4	Trójoctan glicerylu	NR	NR		
5	Dimetylosulfotlenek	NR	NR		
6	Aceton	NR	NR		
7	Chlorek metylenu	R	R		
8	Chloroform	R	R		
9	Toluen	R	R		
10	Ksylen	R	R		
11	Eter monoetylowy glikolu etylenowego	NR	NR		
12	1-butanol	NR	NR		
13	Metanol	NR	NR		
14	Tetrahydrofuran	R	R		
15	Dioksan 1,4	NR	NR		
16	Eter dietylowy	R	R		
17	Heksan	R	R		
18	Heptan	R	R		
19	Mleczan etylu	NR	NR		
20	1,3 dioksolan	NR	NR		
21	Dimetyloformamid	NR	NR		

Tablica 4.4. Wyniki badań rozpuszczalności Ufi Gel Baza i Ufi Gel Katalizator

Tablica 4.5. Toksyczność rozpuszczalników niepolarnych, w których rozpuszczono próbki tworzywa UG. LD50 - dawka substancji toksycznej powodująca uśmiercenie 50% badanej populacji, LC50 - udział substancji toksycznej we wdychanym powietrzu powodujące uśmiercenia 50 % badanej populacji. Na podstawie [217-221]

Nazwa rozpuszczalnika	LC50 (wdychanie, szczur), mg/l/4 h	LD50 (doustnie, szczur), mg/kg	LD50 (skóra, królik, szczur), mg/kg
Ksylen	6350	2840	4500
Toluen	49	636	1214
Heksan	48000	28710	>2000
Heptan	103	>15000	BD

rozpuszczalne. Wykazana podczas odparowania chloroformu z układu częściowa utrata plastyczności tworzywa praktycznie uniemożliwiłaby zastosowanie materiału. Powyższe rezultaty uznano za dyskwalifikujące materiał z dalszych badań. Wyniki badań rozpuszczalności składników tworzywa UGB i UGK zestawiono w tablicy 4.4. Obydwa składniki tworzywa rozpuszczały się w tych samych rozpuszczalnikach, jednak odnotowano, że baza rozpuszczała się nieco szybciej. Testy zakończyły się sukcesem dla czterech rozpuszczalników o umiarkowanie polarnych własnościach: chlorek metylenu, chloroform, eter dietylowy i tetrahydrofuran oraz dla czterech niepolarnych: toluen, ksylen, heksan, heptan. W żadnym z rozpuszczalników nie dochodziło do szybkiej sedymentacji, jak to miało miejsce dla tworzywa Molloplast-B. Obserwowane częściowe rozdzielanie się frakcji roztworu zachodziło powoli i trwało około doby. Na podstawie przeprowadzonych badań do dalszych testów wytypowano w pierwszej kolejności hekasan, który charakteryzuje się najniższą spośród 4 rozpuszczalników temperaturą wrzenia (68°C) i najniższą toksycznością (tablica 4.5) [217-221]. Analiza widm ¹H NMR składników tworzywa (UGB i UGK), z których odparowano rozpuszczalnik, nie wykazała zmian składu chemicznego w porównaniu do materiału w stanie wyjściowym.

Na podstawie testów, które miały na celu organoleptyczne wyznaczenie udziału składników tworzywa w heksanie, powyżej którego roztwór zwiększał swoją lepkość w sposób utrudniający mieszanie lub przelewanie, zdecydowano, że w trakcie dalszych badań będzie wykonywany roztwór o udziale masowym 7 %. Czas niezbędny do uzyskania roztworu w przypadku bazy wynosił 80-90 min, a w przypadku katalizatora 110-120 min.

Wyniki pomiarów rozkładu wielkości cząsteczek nanosrebra w zawiesinie o udziale masowym nanosrebra wynoszącym 30 ppm, którą wykorzystywano w trakcie eksperymentu, przedstawiono na rysunku 4.6. Średnia wielkość nanocząstek wynosiła 22,8 nm.

Rysunek 4.6. Rozkład wielkości nanocząstek srebra w zawiesinie o udziale masowym 30 ppm

W wyniku odparowywania heksanu na wyparce rotacyjnej w temperaturze 50°C, bezbarwny przy ciśnieniu 0,01 MPa destylat, po obniżeniu ciśnienia do 0,001 MPa, przybierał jasnożółtą barwę. Świadczy to o przechodzeniu do destylatu nanocząstek srebra, co wyklucza zastosowanie niskich ciśnień do usuwania heksanu z roztworu kompozycji. W efekcie odparowywania heksanu na wyparce rotacyjnej, w temperaturze pokojowej, pod ciśnieniem 0,01 MPa, po 2 h organoleptycznie nie stwierdzano obecności heksanu. Odparowanie kontynuowano

Rysunek 4.7. Fragmenty widm ¹H NMR po odparowywaniu heksanu: przez 6 godzin na wyparce rotacyjnej w temperaturze pokojowej pod ciśnieniem 0,01 MPa (a), przez 6 godzin w temperaturze 50°C na wyparce rotacyjnej pod ciśnieniem 0,01 MPa (b) oraz przez 6 godzin (c) i opcjonalnie przez 24 godziny (d) w suszarce w temperaturze 50°C pod ciśnieniem atmosferycznym

przez kolejne 4 godziny, po czym z kolby pobrano próbkę materiału, w celu wykonania widma ¹H NMR. Na widmie stwierdzono obecność pików pochodzących od heksanu, które świadczą o śladowej obecności rozpuszczalnika w otrzymanej kompozycji (rys. 4.7a). W wyniku odparowywania heksanu na wyparce rotacyjnej, w temperaturze 50°C, pod ciśnieniem 0,01 MPa, po 2 h organoleptycznie nie stwierdzono obecności rozpuszczalnika w układzie, a przeprowadzona po następnych 4 h na podstawie analizy widma ¹H NMR ocena skuteczności odparowywania nie wykazała obecności rozpuszczalnika w otrzymanej kompozycji (rys. 4.7b). Ogrzewanie roztworu w suszarce w temperaturze 50°C przez 6 h nie przeniosło satysfakcjonujących efektów. Na widmie ¹H NMR stwierdzono obecność pików pochodzących od heksanu (rys. 4.7c). Wydłużenie czasu wygrzewania do 24 h umożliwiło całkowite odparowanie rozpuszczalnika (rys. 4.7d).

Na podstawie przedstawionych wyników badań sformułowano następujące, robocze wnioski, które pozwoliły opracować finalną procedurę usuwania bazy rozpuszczalnikowej z układu:

- stosowanie ciśnienia 0,001 MPa (lub niższego) uniemożliwia właściwe wprowadzenie nanocząstek srebra, ze względu na przechodzenie nanocząstek srebra do destylatu;
- prowadzenie odparowania w temperaturze pokojowej jest niekorzystne, bowiem nawet pod obniżonym cieniem do 0,01 MPa po 6 h odparowywania nadal wykrywano w materiale śladowe ilości heksanu;
- korzystnym jest stosowanie podczas odparowywania temperatury podwyższonej do 50°C;
- w celu całkowitego usunięcia heksanu z roztworu w temperaturze 50°C pod ciśnieniem atmosferycznym należy zastosować czas wygrzewania, który wynosi minimalnie 24 h,

• zastosowanie ciśnienia obniżonego do 0,01 MPa znacznie skraca czas odparowywania.

Opracowana finalna procedura pozwala na otrzymywanie około 27 g, składnika tworzywa, co stanowi zawartość jednego kartusza UGB lub UGK. Pierwszym etapem było wstępne odparowanie rozpuszczalnika z kolby okrągłodennej na wyparce rotacyjnej pod ciśnieniem 0,01 MPa w celu zagęszczenia roztworu do konsystencji średniolepkiego syropu. Przykładowe czasy pozwalające na uzyskanie pożądanej konsystencji roztworów UGB oraz UGK zestawiono w tablicy 4.6. W przypadku otrzymywania kompozytów o udziale nanocząstek srebra 10 ppm do 40 ppm zastosowano ten sam czas odparowywania rozpuszczalnika na wyparce, ponieważ w tym zakresie u_{AgT} masa wprowadzanego z nanocząstkami srebra heksanu do roztworu wzrastała tylko nieznacznie w stosunku do masy heksanu użytego do rozpuszczenia tworzywa.

W przypadku wprowadzania nanocząstek srebra do UGK stosowano czasy odparowywania krótsze o 2 min ze względu na większą lepkość otrzymywanego roztworu.

Po wstępnym odparowaniu roztwór przelewano do szalki Petriego o średnicy 200 mm i wygrzewano w suszarce w temperaturze 50°C przez 24 godziny. Przykładowe widma ¹H NMR potwierdzające skuteczność opracowanej procedury przedstawiono na rysunku 4.8. Nie stwierdzono na nich obecności sygnałów pochodzących od heksanu.

Tablica 4.6. Zestawienie czasu odparowywania rozpuszczalnika na wyparce rotacyjnej pod ciśnieniem 0,01 MPa w trakcie otrzymywania 27 g składników nanokompozytów o różnych udziałach masowych nanoczastek srebra

Udział nanocząstek srebra w składniku tworzywa u _{AgT} , ppm	Czas odparowywania na wyparce rotacyjnej, min UGB UGK		Masa zawiesiny nanocząstek srebra w heksanie <i>m_{Aghex}</i> , g
10	19-20	17-18	9
20	19-20	17-18	18
40	19-20	17-18	36
80	21-22	19-20	72
120	23-24	21-22	108
200	27-28	25-26	180

Rysunek 4.8. Przykładowe fragmenty widm ¹H NMR potwierdzające skuteczność procedury odparowania rozpuszczalnika z "bazy" zawierającej 40 ppm nanocząstek srebra (a) oraz "katalizatora" zwierającego 80 ppm nanocząstek srebra (b)

Szalki Petriego ze składnikami tworzywa zawierającymi różne udziały masowe nanocząstek srebra przedstawiono na rysunku 4.9. Na fotografii dobrze widać uboczny efekt obecności nanocząstek srebra, którym była zmiana koloru składników nanokompozytu.

Rysunek 4.9. Otrzymane składniki nanokompozytów na szalkach Petriego

Rezultaty przeprowadzonego eksperymentu, który umożliwił dopracowanie procedury sieciowania otrzymanych nanokompozytów zestawiono w tablicy 4.7. Wprowadzenie nanocząstek srebra powodowało wydłużenie czasu sieciowania próbek wraz ze wzrostem u_{AgT} . Towarzyszył temu wyraźny spadek końcowej twardości usieciowanych próbek. W trakcie dalszych prac badawczych podczas wykonywania próbek przestrzegano opracowanych procedur.

w garnia cisneniowym, i_c – szacowany carkowity czas sieciowania							
Udział nanocząstek srebra <i>u_{AgT}</i> , ppm	I eta	ар		II etap Całkowity			
	t_p min	<i>t</i> 45 min	Shore A po 5 mim ¹	t_d min	Shore A po t_d	czas sieciowania, min	Shore A po 24 h
0	1,5-2	-	23,3±0,5	15	28,7±0,4	22	30,9±0,3
10	2-3	-	21,4±0,4	15	26,3±0,3	23	28,7±0,4
20	4-6	-	19,5±0,6	20	25,7±0,5	31	28,2±0,2
40	10-13	5	10,3±0,7	30	24,3±0,6	35	27,2±0,3
80	>10	20	11,7±0,6	40	$23,7\pm0,5$	60	25,5±0,4
120	>10	20	9,8±0,5	70	19,4±0,6	90	22,6±0,4
200	>10	30	$10,2\pm0,7$	110	$17,8\pm0,7$	140	21,0±0,5
¹ pomiar wykonywany po 5 minutach od umieszczenia w garnku ciśnieniowym wypełnionym wodą o temperaturze 45°C							

Tablica 4.7. Czas sieciowania próbek o różnych udziałach nanocząstek srebra. t_p – czas pracy, t_{45} – czas wstępnego sieciowania w suszarce, w temperaturze 45°C, t_d – czas sieciowania w garaku ciśnieniowym t

Na podstawie przeprowadzonych badań mikroskopowych stwierdzono, że obrazy uzyskane z wykorzystaniem obydwóch typów detektorów potwierdziły obecność nanocząstek srebra w otrzymanych nanokompozytach (rys. 4.10). Stwierdzono obecność pojedynczych nanocząstek oraz średnich i dużych agregacji. Zaobserwowane pojedyncze nanocząstki

Rysunek 4.10. Mikrofotografie uzyskane z zastosowaniem detektora elektronów przechodzących (wet-STEM) (a,c) oraz gazowego detektora elektronów wtórnych (GSED) (b,d). Białe strzałki wskazują przykładowe agregacje nanocząstek srebra o wielkości 200 do 500 nm w kompozycie o u_{AgT} wynoszącym 80 ppm (a,b) oraz niewielkie agregacje o wielkości 100 od 150 nm w materiale o u_{AgT} 120 ppm (c,d)

mierzyły 10 do 30 nm (rys. 4.11a). Mniejsze agregacje o rozmiarach 50 do 80 nm (rys. 4.11b) mogą pochodzić z koloidu zastosowanego podczas eksperymentu. Świadczą o tym wyniki analizy metodą dynamicznego rozpraszania światła (DLS) przedstawione na rysunku 4.6. Wraz ze zwiększaniem udziału nanocząstek srebra obserwowano wyraźną tendencję do wzrostu liczby i rozmiarów agregacji. Liczne były agregacje mierzące 100 do 200 nm (rys. 4.11c).

Rysunek 4.11. Mikrofotografie (wet-STEM) przedstawiające: a) nanocząstkę srebra, 25 nm (u_{AgT} 40 ppm), b) agregację o rozmiarach 80 nm (u_{AgT} 40 ppm), c) agregację o rozmiarach 120 nm wraz widocznymi w pobliżu pojedynczymi nanocząstkami (u_{AgT} 200 ppm) oraz d) dużą agregację przekraczającą 1 μm (u_{AgT} 120 ppm)

Dla u_{AgT} 10 i 20 ppm nie zaobserwowano większych agregacji. Od u_{AgT} wynoszącego 80 ppm obserwowano bardzo liczne, duże agregacje, mierzące kilkaset nm, a w skrajnych przypadkach powyżej 1 µm (rys. 4.11d). Nawet w przypadku najwyższego u_{AgT} , wynoszącego 200 ppm, odnotowywano obecność pojedynczych nanocząstek.

4.2. Badania aktywności przeciwdrobnoustrojowej otrzymanych nanokompozytów

Wyniki badań zaprezentowano w tablicy 4.8, a na rysunku 4.12 zaprezentowano przykładowe rezultaty testów grzybobójczości analizowanych materiałów. W przypadku próbek materiału UG odnotowano wzrost liczby jednostek tworzących kolonie grzybów w 1 ml o 23,4 % w porównaniu do kontroli pozytywnej. Wprowadzenie 10 ppm nanocząstek srebra do tworzywa pozwoliło uzyskać *AFE* na poziomie 16,4 %. Dwukrotne zwiększenie u_{AgT} spowodowało zwiększenie *AFE* o kolejne 8 %. Średnia wartość *AFE* dla próbek zawierających 40 ppm nanocząstek srebra wynosiła 31,5 %. Dalsze zwiększanie u_{AgT} powodowało już mniej dynamiczny, aczkolwiek ciągle widoczny, wzrost *AFE*. Dla najwyższego u_{AgT} (200 ppm) średnia *AFE* wynosiła 52,5 % – zatem aż pięciokrotne zwiększenie u_{AgT} w badanych kompozytach pozwoliło podwyższyć średnią wartość *AFE* tylko o 20,7 %.

Wyniki przeprowadzonych badań aktywności bakteriobójczej zestawiono w tablicy 4.9, a na rysunku 4.13 przedstawiono przykładowe rezultaty testów. W przypadku zastosowania tworzywa UG uzyskano *ABE* wynoszącą 33,45 %. Uzyskana wartość *ABE* wynika jednak nie z własności samego materiału UG, co z zachowania się szczepu bakterii podczas eksperymentu. Przypuszczenie to zostało potwierdzone w wyniku dodatkowego testu, polegającego na dwukrotnym powtórzeniu badań dla tworzywa UG i wybranego kompozytu. Nie wykazano redukcji liczby bakterii dla tworzywa UG. W związku z powyższym, w dalszych rozważaniach wartość *ABE* uzyskaną dla tworzywa w postaci przeznaczonej do użytku komercyjnego potraktowano jako tzw. tło, odejmując od wartości *ABE* dla danego kompozytu, wartość *ABE* uzyskanę dla UG. Otrzymywano tym samym skuteczność bakteriobójczą uzyskaną dzięki wprowadzeniu do kompozytu nanocząsteczek srebra, którą oznaczano jako *ABE_{AgNP}*.

W przypadku zastosowania kompozytu o u_{AgT} 10 ppm nie odnotowano skuteczności przeciwbakteryjnej materiału. Wprowadzenie do tworzywa kolejno 20 i 40 ppm nanocząsteczek

Udział masowy nanocząstek srebra <i>u_{AgT}</i> , ppm	Gęstość testowej zawiesiny drobnoustroju, V _t , x10 ³ CFU/ml	Skuteczność grzybobójcza <i>AFE</i> , %
0	1,43±0,22	0
10	0,96±0,16	16,3±6,2
20	0,87±0,04	24,2±3,5
40	0,79±0,04	31,5±3,1
80	0,74±0,06	36,6±5,4
120	0,60±0,07	47,8±6,3
200	0,55±0,07	52,2±6,2
Kontrola dodatnia	1,15	-

Tablica 4.8. Średnie skuteczności grzybobójcze (AFE) wraz z odchyleniami standardowymi przeciw Candida albicans tworzywa UG oraz kompozytów zawierających nanocząstki srebra

Tablica 4.9. Średnia skuteczność bakteriobójcza (ABE) wraz z odchyleniami standardowymi przeciw Streptococcus Mutans dla UG oraz uzyskanych nanokompozytów

Udział masowy nanocząstek srebra <i>u_{AgT}</i> , ppm	Gęstość testowej zawiesiny drobnoustroju <i>V_t</i> , x10 ³ CFU/ml	Skuteczność bakteriobójcza <i>ABE</i> , %	Skuteczność bakteriobójcza nanocząstek srebra <i>ABE_{AgNP}</i> , %
0	0,97±0,06	33,45±4,39	0,00
10	0,94±0,03	35,17±1,95	1,72
20	0,83±0,02	42,62±1,17	9,17
40	0,63±0,04	56,85±2,98	23,40
80	0,57±0,02	60,83±1,18	27,38
120	0,53±0,01	63,74±0,85	30,29
200	0,33±0,02	76,46±1,94	43,01
Vc (blank)	1,45	-	_

80 ppm 120 ppm 200 ppm

Rysunek 4.13. Przykładowe rezultaty testu własności bakteriobójczych przeciw Streptococcus Mutans po 17 h inkubacji z próbkami UG oraz otrzymanymi kompozytami

srebra pozwoliło uzyskać wartości ABE_{AgNP} wynoszące odpowiednio 9,17 % i 23,4 %. Dalsze zwiększanie udziału nanosrebra w materiale również powodowało wzrost aktywności przeciwdrobnoustrojowej. Pięciokrotne zwiększenie u_{AgT} z 40 do 200 ppm umożliwiło niespełna dwukrotne zwiększenie wartości ABE_{AgNP} .

4.3. Własności mechaniczne i użytkowe otrzymanych nanokompozytów

Wyniki pomiarów twardości w skali Shore'a A zestawiono w tablicy 4.10. Rezultaty przeprowadzonej analizy statystycznej zestawiono w tablicy 4.11. Graficzną interpretację uzyskanych zależności przedstawiono na rysunku 4.14.

Materiały o u_{AgT} 10 do 80 ppm zostały zaklasyfikowane według wskazań normy europejskiej [223] jako "miękkie", podobnie jak materiał UG. Nanokompozyty o udziałach 120 i 200 ppm nanocząstek srebra charakteryzowały się twardością właściwą dla materiałów "super miękkich".

Na podstawie przeprowadzonej analizy statystycznej (tablica 4.11) stwierdzono, że u_{AgT} w sposób istotny wpływa na twardość otrzymanych nanokompozytów (p<0,05). Wzrost u_{AgT} powodował spadek twardości. Nie stwierdzono statystycznie istotnego wpływu (p>0,05) czasu

Czas	Udział nanocząstek srebra w kompozycie <i>u_{AgT}</i> , ppm							
t _{st} , dni	0	10	20	40	80	120	200	
0	$31,2 \pm 0,6^{a}$	$29,1 \pm 0,5^{b}$	$28,0 \pm 0,5^{c}$	$27{,}3\pm0{,}9^{cd}$	$26,0 \pm 0,5^{e}$	$22{,}9\pm0{,}5^{\rm f}$	$21,4 \pm 0,9^{g}$	
1	$31,2 \pm 0,6^{a}$	$28,9 \pm 0,5^{b}$	$28,2 \pm 0,6^{bc}$	$27,5 \pm 0,7^{cd}$	$25,9 \pm 0,4^{e}$	$\textbf{22,8} \pm \textbf{0,4}^{\mathrm{f}}$	$21,4 \pm 1,0^{g}$	
7	$31,3 \pm 0,5^{a}$	$28,8 \pm 0,7^{b}$	$28,2\pm0,6^{bc}$	$27{,}5\pm0{,}7^{cd}$	$26,3 \pm 0,5^{e}$	$22{,}9\pm0{,}5^{\rm f}$	$21,\!3\pm1,\!1^{\text{g}}$	
14	$31,5 \pm 0,7^{a}$	$28,8 \pm 0,8^{b}$	$28{,}2\pm0{,}4^{bc}$	$27{,}4\pm0{,}8^{cd}$	$25,8 \pm 0,4^{e}$	$22{,}9\pm0{,}4^{\rm f}$	$21,\!3\pm0,\!8^{\rm g}$	
28	$31,1 \pm 0,5^{a}$	$28,9 \pm 0,8^{b}$	$28,1 \pm 0,7^{\circ}$	$27,6 \pm 0,7^{cd}$	$26,2 \pm 0,8^{\circ}$	$22,8 \pm 0,5^{f}$	$21,3 \pm 0,8^{g}$	
45	$31,1 \pm 0,6^{a}$	$28,9 \pm 0,7^{b}$	$28,0 \pm 0,5^{c}$	$27,5\pm0,7^{cd}$	$26,0 \pm 0,6^{e}$	$22,8\pm0,5^{\rm f}$	$21,6 \pm 0,8^{g}$	
60	$31,2 \pm 0,5^{a}$	$29,0 \pm 0,5^{b}$	$28,2 \pm 0,4^{c}$	$27,6\pm0,7^{cd}$	$25,9 \pm 0,7^{e}$	$23,1 \pm 0,6^{f}$	$21,5 \pm 1,0^{g}$	
75	$31,2 \pm 0,6^{a}$	$28,9 \pm 0,7^{b}$	$28,1 \pm 0,5^{c}$	$27,1 \pm 0,8^{d}$	$25,9 \pm 0,4^{e}$	$22,8 \pm 0,6^{f}$	$21,8 \pm 0,9^{g}$	
90	$31,1 \pm 0,5^{a}$	$28,7 \pm 0,7^{b}$	$28,0\pm0,4^{bc}$	$27{,}5\pm0{,}8^{cd}$	$26,0 \pm 0,4^{e}$	$22{,}9\pm0{,}7^{\rm f}$	$21{,}9\pm0{,}8^{\text{g}}$	
*Średnie z	*Średnie z takimi samymi małymi literami w indeksie górnym (A-B) dla każdego wiersza nie różnią się od siebie w sposób statystycznie istotny (p>0,05)							

Tablica 4.10. Wartości średnie wraz z odchyleniami standardowymi twardości w skali Shore'a A po różnych czasach starzenia (t_{st}). Pogrubiono rezultaty uzyskane po t_{st} wg. wskazań [223]*

Rysunek 4.14. Wpływ u_{AgT} i czasu starzenia (t_{st}) próbek w wodzie destylowanej na twardość w skali Shore'a A, poziome markery wskazują poziom ufności

Tablica 4.11. Rezultaty oceny statystycznej testem ANOVA dla układów wieloczynnikowych
wpływu czasu starzenia (t_{st}) i udziału masowego nanocząstek srebra w kompozytach
na twardość w skali Shore'a A, α =0,05

	Suma kwadratów	Stopnie swobody	Średnie kwadraty	Wartość statystyki Fishera	р
t _{st}	1,106	8	0,1382	0,3178	0,9595
u_{AgT}	9418,886	6	1569,8144	3609,9531	<0,0001
$t_{st} \times u_{AgT}$	15,287	48	0,3185	0,7324	0,9122

Rysunek 4.15. Mikrofotografie SEM przedstawiające przykładowy złom powstały na skutek zniszczenia typu mieszanego z widocznym po lewej stronie obszarem niszczenia adhezyjnego, po prawej – kohezyjnego (a) i powiększenie uzyskane dla część przełomu adhezyjnego z widocznymi śladami odwzorowania szlifowanej powierzchni próbki z żywicy akrylowej(b)

starzenia na twardość ani też wspólnego oddziaływania u_{AgT} i t_{st} na twardość (p>0,05). Przeprowadzony test post-hoc wykazał, że tworzywa różniły się od siebie wzajemnie twardością (p<0,05). Tym niemniej w przypadku porównania nanokompozytów o u_{AgT} 10 i 20 ppm różnice twardości były istotne (p<0,05) dla 67 % porównywanych grup. W przypadku porównania nanokompozytów o u_{AgT} 20 ppm i 40 ppm tylko 13 % grup różniło się od siebie średnią twardością w sposób statystycznie istotny.

Określony w trakcie testów wytrzymałości połączenia otrzymanych nanokompozytów z żywicami akrylowymi rodzaj powstałego zniszczenia próbek zależał w sposób statystycznie istotny (p<0,05) od udziału nanocząstek srebra w badanych materiałach. Przykładowe mikrofotografie, uzyskane na skaningowym mikroskopie elektronowym (Hitachi S-3400N), przedstawiające złomy powstałe w trakcie badań wytrzymałości połączenia, pokazano na rysunku 4.15. Wyniki przeprowadzonych badań zestawiono na wykresach na rysunku 4.16 oraz rysunku 4.17. Do u_{AgT} wynoszącego 40 ppm rodzaj zniszczenia próbek był analogiczny jak w przypadku materiału w stanie wyjściowym (przewaga mechanizmu zniszczenia adhezyjnego nad adhezyjno-kohezyjnym). Przy większych wartościach u_{AgT} odnotowano zmianę mechanizmu niszczenia. Próbki o u_{AgT} wynoszącym 80 ppm ulegały przeważnie niszczeniu adhezyjno-kohezyjnemu lub kohezyjnemu. W przypadku próbek o u_{AgT} równym 120 ppm zanotowano przewagę złomów kohezyjnych oraz nieliczne złomy adhezyjno-kohezyjne. Dla próbek o u_{AgT} 200 ppm odnotowywano wyłącznie mechanizm niszczenia kohezyjnego. Jednocześnie nie odnotowano wpływu zastosowanej żywicy akrylowej oraz czasu starzenia na rodzaj powstałego zniszczenia (p>0,05).

Na podstawie przeprowadzonych badań stwierdzono, że spośród otrzymanych nanokompozytów wymagania [223] dotyczące wytrzymałości połączenia spełniają nanokompozyty o u_{AgT} wynoszących 10, 20 oraz 40 ppm. Materiał o u_{AgT} 80 ppm spełniał wymagania stawiane materiałom supermiękkim. Wprawdzie uzyskana twardość pozwoliła sklasyfikować ten nanokompozyt jako materiał miękki, jednak była ona tylko nieznacznie wyższa, niż wartość progowa (26±0,5 Shore'a A przy kryterium ≤25 Shore'a A). Pełne zestawienie wyników zawarto w tablicy 4.12.

Rodzaj		Liczba wystąpień σ _B <1 MPa oraz (σ _B <0,5 MPa)								
żywicy	0 ppm	10 ppm	20 ppm	40 ppm	80 ppm	120 ppm	200 ppm			
VRS	1	2	0	1	6	10(7)	10 (10)			
VC	1	1	0	1	7	10(3)	10 (10)			

Tablica 4.12. Sprawdzenie stopnia wypełniania wymagań normy. σ_B – wytrzymałość
połączenia

Rezultaty oceny statystycznej testem ANOVA wpływu t_{st} i u_{AgT} na wytrzymałość połączenia przedstawiono w tablicy 4.13. Uzyskane średnie wartości wytrzymałości połączenia (σ_B) materiału UG i otrzymanych nanokompozytów z żywicami akrylowymi VC i VRS zestawiono w tablicach. 4.14 oraz 4.15. W przypadku obu żywic wykazano istotny statystycznie wpływ (p<0,05) czasu starzenia i u_{AgT} na uzyskane wartości σ_B przebadanych materiałów. Nie wykazano wspólnego oddziaływania czasu starzenia i u_{AgT} na uzyskane wartości σ_B (tablica 4.12). Graficzną interpretację powyższych zależności przedstawiono na rysunkach 4.18 oraz 4.19. W przypadku obydwóch kompilacji nanokompozyt-żywica akrylowa, wpływ u_{AgT} na uzyskiwane

Rysunek 4.16. Wpływ udziału masowego nanocząstek srebra na rodzaj zniszczenia powstałego podczas badań wytrzymałości na rozciąganie połączenia materiału UG i nanokompozytów z żywicą akrylową VRS po: 24 h (a), 7 dniach (b) oraz 28 dniach (c) starzenia w wodzie destylowanej; A – zniszczenie adhezyjne, AK – zniszczenie adhezyjno – kohezyjne, K – zniszczenie kohezyjne

Rysunek 4.17. Wpływ udziału masowego nanocząstek srebra na rodzaj zniszczenia powstałego podczas badań wytrzymałości na rozciąganie połączenia nanokompozytów i materiału UG z żywicą akrylową VC po: 24 h (a), 7 dniach (b) oraz 28 dniach (c) starzenia w wodzie destylowanej

	Suma kwadratów	Stopnie swobody	Średnie kwadraty	Wartość statystyki Fishera	р
			VC		
t_{st}	1,922	2	0,9610	19,4224	<0,0001
u_{AgT}	65,973	6	10,9955	222,234	<0,0001
$t_{st} \times u_{AgT}$	1,315	12	0,1096	2,2152	0,0515
			VRS		
t_{st}	1,484	2	0,7418	15,5083	<0,0001
u_{AgT}	49,503	6	8,2504	172,482	<0,0001
$t_{st} \times u_{AgT}$	0,848	12	0,0707	1,4774	0,1356

Tablica 4.13. Wpływ t_{st} i u_{AgT} na wytrzymałość połączenia z wybranymi materiałami akrylowymi. Rezultaty testu ANOVA dla układów wieloczynnikowych, α =0,05

 Tablica 4.14. Wartości średnie wraz z odchyleniami standardowymi wytrzymałości połączenia

 materiału UG i otrzymanych nanokompozytów z żywicą akrylową VC*

Czas starzonia t	Udział nanoc	Udział nanocząstek srebra w kompozycie <i>u_{AgT}</i> , ppm						
dni	1 dzień	7 dni	28 dni					
0	$1,30 \pm 0,22^{A,a}$	$1,67 \pm 0,26^{A,a}$	$1,66 \pm 0,30^{A,a}$					
10	$1,41 \pm 0,32^{A,a}$	$1,78 \pm 0,26^{B,a}$	$1,65 \pm 0,25^{AB,a}$					
20	$1,44 \pm 0,18^{A,a}$	$1,82 \pm 0,23^{B,a}$	$1,71 \pm 0,33^{AB,a}$					
40	$1,47 \pm 0,31^{A,a}$	$1,86 \pm 0,28^{\mathrm{B,a}}$	$1,75 \pm 0,27^{AB,a}$					
80	$0,93 \pm 0,14^{A,b}$	$1,02 \pm 0,12^{A,b}$	$0,93 \pm 0,17^{A,b}$					
120	$0,52 \pm 0,05^{\rm A,c}$	$0,53 \pm 0,04^{\rm A,c}$	$0,54 \pm 0,02^{A,c}$					
200	$0,24 \pm 0,02^{\mathrm{A,d}}$	$0,23 \pm 0,02^{\mathrm{A,d}}$	$0,20 \pm 0,02^{ m A,d}$					
*Średnie z takimi	*Średnie z takimi samymi dużymi literami w indeksie górnym (A-B) dla każdego wiersza oraz takimi							

samymi małymi literami w indeksie górnym (a-d) dla każdej kolumny nie różnią się od siebie w sposób statystycznie istotny (p>0,05)

 Tablica 4.15. Wartości średnie wraz z odchyleniami standardowymi wytrzymałości połączenia materiału UG i otrzymanych nanokompozytów z żywicą akrylową VRS*

Czas	Udział nanocząstek srebra w kompozycie <i>u</i> _{AgT} , ppm							
starzenia <i>t_{st}</i> , dni	1 dzień	7 dni	28 dni					
0	$1,18 \pm 0,17^{A,a}$	$1,53 \pm 0,17^{\mathrm{B,a}}$	$1,48 \pm 0,29^{\mathrm{B,a}}$					
10	$1,\!29\pm0,\!24^{A,a}$	$1,62 \pm 0,23^{\mathrm{B,a}}$	$1,51 \pm 0,31^{AB,a}$					
20	$1,28 \pm 0,16^{A,a}$	$1,61 \pm 0,30^{\mathrm{B,a}}$	$1,55 \pm 0,26^{AB,a}$					
40	$1,33 \pm 0,22^{A,a}$	$1,59 \pm 0,36^{A,a}$	$1,58 \pm 0,37^{A,a}$					
80	$0,91 \pm 0,15^{A,b}$	$0,96 \pm 0,14^{A,b}$	$0,93 \pm 0,11^{A,b}$					
120	$0,51 \pm 0,06^{A,c}$	$0,54 \pm 0,02^{ m A,c}$	$0,52 \pm 0,02^{A,c}$					
200	$0,22 \pm 0,03^{A,d}$	$0,25 \pm 0,02^{A,d}$	$0,21 \pm 0,02^{A,d}$					

*Średnie z takimi samymi dużymi literami w indeksie górnym (A-B) dla każdego wiersza oraz takimi samymi małymi literami (a-d) w indeksie górnym dla każdej kolumny nie różnią się od siebie w sposób statystycznie istotny (p>0,05)

Rysunek 4.18. Wpływ czasu starzenia na wytrzymałość połączenia nanokompozytów o różnych udziałach masowych nanocząstek srebra oraz tworzywa UG z żywicą akrylową VC; markerami zaznaczono przedziały ufności

Rysunek 4.19. Wpływ czasu starzenia na wytrzymałość połączenia nanokompozytów o różnych udziałach masowych nanocząstek srebra oraz tworzywa UG z żywicą akrylową VRS; markerami zaznaczono przedziały ufności

wartości $\sigma_{\rm B}$ był kilkunastokrotnie większy, niż wpływ czasu starzenia w wodzie destylowanej, o czym świadczą wartości statystyk Fishera. Przeprowadzony test post-hoc wykazał, że średnie wartości $\sigma_{\rm B}$ uzyskane dla materiału UG oraz nanokompozytów o u_{AgT} 10, 20, 40 ppm nanocząstek srebra nie różniły się od siebie w sposób statystycznie istotny (p>0,05). Powyżej u_{AgT} wynoszącego 40 ppm zanotowano wyraźny spadek średnich wartości $\sigma_{\rm B}$. Zwiększenie u_{AgT} z 40 do 80 ppm spowodowało obniżenie średniej wartości $\sigma_{\rm B}$ o blisko 40 %, a zwiększenie u_{AgT} do 200 ppm, przyniosło efekt w postaci blisko siedmiokrotnego obniżenia zarejestrowanych wartości $\sigma_{\rm B}$.

Zanotowany wpływ czasu starzenia na wartości σ_B był istotny w przypadku materiału UG oraz nanokompozytów o u_{AgT} wynoszącym od 10 do 40 ppm, przy czym różnice (wzrost σ_B) były znaczące między średnimi wartościami σ_B uzyskanymi dla próbek starzonych przez 24 h oraz 7 dni. Wydłużenie czasu starzenia do 28 dni spowodowało wprawdzie obniżenie średnich wartości σ_B w porównaniu do rezultatów uzyskanych po 7 dniach, jednak różnice nie były statystycznie istotne.

Wykazano także, że wartości $\sigma_{\rm B}$ badanych materiałów z obydwoma żywicami akrylowymi były porównywalne (p>0,05, brak statystycznie istotnej różnicy) w przypadku zastosowania takich samych u_{AgT} oraz czasów starzenia próbek, a zatem rodzaj zastosowanej żywicy nie wpływał na jakość wytworzonych połączeń.

Na rysunku 4.20 przedstawiono przykładowy obraz uzyskany na skaningowym mikroskopie elektronowym Hitachi S-3400N, przedstawiający strefę połączenia akrylu z silikonem. Obserwacje przeprowadzono dla tworzywa UG i nanokompozytu o u_{AgT} wynoszącym 40 ppm połączonych z żywicą akrylową VC. Nie wykazały one wpływu wprowadzenia nanocząstek srebra na mechanizm połączenia materiałów.

Wyniki badań nasiąkliwości i rozpuszczalności prowadzonych zgodnie z Normą [223] zestawiono w tablicy 4.16. Wartości nasiąkliwości otrzymanych nanokompozytów były od trzy do pięciu razy mniejsze od wymaganych normą, a rozpuszczalność została przekroczona powyżej dopuszczalnej tylko w przypadku jednej próbki o najwyższym u_{AgT} o zaledwie 0,1 $\frac{\mu g}{mm^3}$. Wszystkie przebadane materiały spełniły wymagania normy [223].

Rezultaty oceny statystycznej testem ANOVA wpływu u_{AgT} i t_{st} na nasiąkliwość przedstawiono w tablicy 4.17, a w tablicy 4.18 zestawiono średnie wartości nasiąkliwości wyliczone według zależności 3.12. Wraz ze wzrostem czasu starzenia oraz zwiększaniem udziału

Rysunek 4.20. Mikrofotografia SEM przedstawiająca przykładowe połączenie materiału podścielającego z żywicą akrylową z dobrze widoczną warstwą łączącą wytworzoną przez środek wiążący

	Nasiąkliwość w_{sp} , $\frac{\mu g}{mm^3}$				Rozpuszczalność w_{sl} , $\frac{\mu g}{mm^3}$					
Nr próbki	1	2	3	4	5	1	2	3	4	5
0 ppm	3,7	3,7	2,7	2,3	2,4	0,9	0,9	1,2	0,8	0,9
10 ppm	3,8	4,7	3,4	4,1	2,7	1,5	1,5	0,9	0,9	1,2
20 ppm	5,1	5,6	5,1	3,8	3,7	0,9	0,9	1,5	1,0	1,1
40 ppm	4,0	3,9	4,8	3,9	3,0	1,1	1,1	0,8	0,7	1,0
80 ppm	4,5	3,2	3,7	4,5	5,9	1,1	1,1	1,7	1,3	1,1
120 ppm	6,9	6,4	5,4	4,1	6,1	1,2	1,2	2,3	1,6	1,5
200 ppm	6,2	8,3	7,8	5,4	8,7	3,1	2,1	1,5	2,4	2,2

Tablica 4.16. Stopień spełnienia wymagań normy [223] dotyczących nasiąkliwości i rozpuszczalności. Pogrubiona czcionka oznacza brak spełniania wymagań normy

Tablica 4.17. Wpływ u_{AgT} i t_{st} na nasiąkliwość. Rezultaty testu ANOVA dla układów
wieloczynnikowych. (p < 0,05)

	Suma kwadratów	Stopnie swobody	Średnie kwadraty	Wartość statystyki Fishera	р
u_{AgT}	3,036	6	0,5060	45,9973	<0,0001
t _{st}	0,704	1	0,7041	64,0087	<0,0001
$t_{st} \times u_{AgT}$	0,392	6	0,0653	5,9379	0,0001

		C				
Udział nanocząstek	Nasiąkliwość w _{sp} , %					
u_{AgT} , ppm	7 dni	28 dni				
0	$0,27 \pm 0,05^{A,a}$	$0,37 \pm 0,06^{A,a}$				
10	$0,32 \pm 0,06^{A,ab}$	$0,41 \pm 0,06^{A,ab}$				
20	$0,41 \pm 0,06^{A,ab}$	$0,46 \pm 0,08^{A,ab}$				
40	$0,37 \pm 0,06^{A,ab}$	$0,51 \pm 0,09^{A,ab}$				
80	$0,38 \pm 0,08^{\mathrm{A,ab}}$	$0,59 \pm 0,09^{\mathrm{B},\mathrm{b}}$				
120	$0,51 \pm 0,09^{A,b}$	$0,79 \pm 0,14^{\mathrm{B,c}}$				
200	$0,72 \pm 0,12^{A,c}$	$1,24 \pm 0,18^{\mathrm{B,d}}$				
*Średnie z takimi samymi du:	żymi literami w indeksie górnym (A-B)) dla każdego wiersza oraz takimi				

Tablica 4.18. Wartości średnie wraz z odchyleniami standardowymi nasiąkliwości materiałuUG i nanokompozytów o różnych udziałach masowych nanocząstek srebra*

*Średnie z takimi samymi dużymi literami w indeksie górnym (A-B) dla każdego wiersza oraz takimi samymi małymi literami w indeksie górnym (a-d) dla każdej kolumny nie różnią się od siebie w sposób statystycznie istotny (p>0,05)

Rysunek 4.21. Wpływ czasu starzenia na nasiąkliwość materiału UG i nanokompozytów o różnych udziałach masowych nanocząstek srebra, markery oznaczają przedział ufności

nanocząstek srebra w kompozytach wzrastała masa zaabsorbowanej przez próbki wody. Stwierdzono, że wpływ zwiększania u_{AgT} był mniejszy od wpływu czasu starzenia, o czym świadczą wartości statystyk Fishera. Istotne było wspólne odziaływanie czasu starzenia i u_{AgT} na nasiąkliwość. Graficzną interpretację powyższych zależności przedstawiono na rysunku 4.21.

Na podstawie przeprowadzonego testu post-hoc nie wykazano statystycznie istotnych różnic między średnimi nasiąkliwościami próbek wykonanych z materiału UG i nanokompozytów o u_{AgT} wynoszących od 10 do 40 ppm bez względu na zastosowany czas starzenia. Zwiększenie u_{AgT} do 80 ppm pogorszyło własności kompozytu. Wprawdzie po 7 dniach starzenia nasiąkliwość nanokompozytu nie różniła się statystycznie od nasiąkliwości materiałów o mniejszym u_{AgT} , ale po 28 dniach odnotowano znaczący wzrost nasiąkliwości w stosunku do materiałów o u_{AgT} wynoszącym 0 do 80 ppm starzonych przez 7 dni oraz w stosunku do UG starzonego przez 28 dni. Podniesienie u_{AgT} do 120 ppm spowodowało dalsze zwiększenie nasiąkliwości. Po 7 dniach starzenia wykazano statystycznie istotną różnicę średnich tylko w porównaniu do próbek wykonanych z materiału UG, tym niemniej próbki starzone przez 28 dni różniły się nasiąkliwością od próbek wszystkich typów starzonych przez 7 dni i 28 dni. Nasiąkliwość próbek wykonanych z nanokompozytu o u_{AgT} wynoszącym 200 ppm była w sposób istotny większa od nasiąkliwości próbek otrzymanych z innych materiałów w przypadku obydwóch czasów starzenia. Odnotowane różnice wskazują, że zwiększanie u_{AeT} oddziaływało negatywnie na nasiąkliwość nanokompozytów dopiero od udziału nanocząstek srebra 80 ppm.

	Suma kwadratów	Stopnie swobody	Średnie kwadraty	Wartość statystyki Fishera	р
u_{AgT}	0,226	6	0,0377	35,6664	<0,0001
t _{st}	0,010	1	0,0096	9,0860	0,0039
$t_{st} \times u_{AgT}$	0,014	6	0,0023	2,1898	0,0574

Tablica 4.19. Wpływ t_{st} i u_{AgT} na rozpuszczalność. Rezultaty trstu ANOVA dla układów wieloczynnikowych, (p < 0,05)

Tablica	4.20.	Średnie	rozpuszcza	lności wraz z	z odchvlen	iami stand	ardowvmi*
1 wowen		Si cunic	1 O L P H S L C L C I	moser mierz	= 000011y1011	control Sterrer	an all in y mit

Udział nanocząstek	Rozpuszczalność w _{sł} , %					
u_{AgT} , ppm	7 dni	28 dni				
0	$0,09 \pm 0,01^{A,a}$	$0,10 \pm 0,02^{A,a}$				
10	$0,09 \pm 0,02^{\mathrm{A,a}}$	$0,11 \pm 0,02^{A,a}$				
20	$0,11 \pm 0,03^{A,a}$	$0,10 \pm 0,03^{A,a}$				
40	$0,09 \pm 0,02^{\mathrm{A,a}}$	$0,09 \pm 0,02^{A,a}$				
80	$0,11 \pm 0,02^{A,a}$	$0,14 \pm 0,02^{A,ab}$				
120	$0,15 \pm 0,03^{A,a}$	$0,19 \pm 0,04^{A,b}$				
200	$0,22 \pm 0,05^{A,b}$	$0,30 \pm 0,05^{\mathrm{B,c}}$				
*Średnie z takimi samymi duż	ymi literami w indeksie górnym (A-B) d	la każdego wiersza oraz takimi				

samymi małymi literami w indeksie górnym (a-b) dla każdej kolumny nie różnią się od siebie w sposób statystycznie istotny (p>0,05)

Rezultaty oceny statystycznej testem ANOVA wpływu u_{AgT} i t_{st} na rozpuszczalność zestawiano w tablicy 4.19, a w tablicy 4.20 zestawiono średnie wartości rozpuszczalności wyliczone według zależności 3.13. Wraz ze wzrostem czasu starzenia oraz zwiększaniem udziału nanocząstek srebra w nanokompozytach wzrastała rozpuszczalność testowanych materiałów. Stwierdzono, że wpływ czasu starzenia był mniejszy od wpływu zwiększania u_{AgT} , o czym świadczą wartości statystyk Fishera. Statystycznie nieistotne było wspólne odziaływanie czasu starzenia i u_{AgT} na rozpuszczalność. Graficzną interpretację powyższych zależności przedstawiono na rysunku 4.22. Na podstawie przeprowadzonego testu post-hoc nie wykazano po 7 i 28 dniach starzenia statystycznie istotnych różnic między średnimi rozpuszczalnościami uzyskanymi dla próbek wykonanych z materiału UG i nanokompozytów o u_{AgT} wynoszących 10 do 80 ppm. Próbki wykonane z materiału o u_{AgT} 120 ppm po 7 daniach starzenia także nie różniły się rozpuszczalnością od próbek wykonanych z materiałów o niższym udziale masowym nanosrebra. Jednak po 28 dniach starzenia średnia rozpuszczalność różniła się w sposób statystycznie istotny od próbek starzonych przez 7 dni (u_{AgT} od 0 do 80 ppm)

Rysunek 4.22. Wpływ czasu starzenia na rozpuszczalność materiału UG i nanokompozytów o różnych udziałach masowych nanocząstek srebra, markery oznaczają przedział ufności

i 28 dni (u_{AgT} od 0 do 40 ppm). Różnice średnich rozpuszczalności nie były istotne w zestawieniu z rozpuszczalnością próbek o u_{AgT} 80 ppm starzonych przez 28 dni oraz o u_{AgT} 120 ppm po 7 dniach starzenia. Próbki nanokompozytu o u_{AgT} wynoszącym 200 ppm po 7 i 28 dniach starzenia różniły się rozpuszczalnością od siebie oraz od wszystkich innych przebadanych próbek.

Przykładowe charakterystyki czasowe uzyskane podczas obciążenia i odciążenia przedstawiono na rysunku 4.23.

Uzyskane średnie wartości ε_0 dla próbek o odmiennych u_{AgT} różniły się od siebie w sposób statystycznie istotny (p<0,05) dla wszystkich poziomów σ_u (tablica 4.21). Średnie wartości ε_0 zestawiono w tablicy 4.22. Na podstawie testu post-hoc stwierdzono, że nie różnią się od siebie tylko średnie wartości ε_0 dla UG i nanokompozytu o u_{AgT} wynoszącym 10 ppm. Począwszy od u_{AgT} 20 ppm zwiększanie udziału nanocząstek srebra powodowało wzrost średnich wartości ε_0 (spadek sztywności), przy czym tendencja ta była szczególnie silna od u_{AgT} wynoszącego 80 ppm.

Przeprowadzone analizy statystyczne wykazały zależności współczynników $\varepsilon_{5/0}$ oraz $\varepsilon_{30/5}$ od u_{AgT} (tablica 4.23). Wartości współczynników $\varepsilon_{5/0}$ zestawiono w tablicy 4.24. Test post-hoc

Rysunek 4.23. Przykładowe charakterystyki odkształcenie-czas uzyskane przy naprężeniu umownym wynoszącym 0,1 MPa

wykazał, że dla naprężenia 0,1 MPa średnie współczynnika $\varepsilon_{5/0}$ były w sposób statystycznie istotny większe dla otrzymanych nanokompozytów, niż dla tworzywa UG. Przy σ_u wynoszącym 0,1 i 0,2 MPa próbki nanokompozytów o u_{AgT} 120 i 200 ppm charakteryzowały się współczynnikiem $\varepsilon_{5/0}$ istotnie większym, niż próbki materiałów o mniejszym u_{AgT} . Przy naprężeniu

*Tablica 4.21. Rezultaty oceny statystycznej testem ANOVA wpływu u*_{AgT} na średnie wartości odkształcenia w chwili zrealizowania maksymalnego naprężenia umownego

Naprężenie umowne σ _u , MPa	Źródło wariancji	Suma kwadratów	Stopnie swobody	Średnie kwadraty	Wartość statystyki Fishera	р
0,1	u _{AgT}	1654,44	6	275,74	2051,23	<0,0001
0,2	u _{AgT}	2840,00	6	473,33	887,64	<0,0001
0,4	u _{AgT}	3620,59	6	603,43	833,23	<0,0001
0,6	u _{AgT}	4624,23	6	770,71	680,09	<0,0001

Tablica 4.22	. Wartości średnie	odkształcenia v	v chwili zre	alizowania	maksymaln	ego obciąże	enia
próbki wraz	z odchyleniami st	andardowymi d	łla różnych	wartości n	naprężenia i	ımownego	$\sigma_{\!u}^*$

Udział nanocząstek	Odkształcenie v	Odkształcenie w chwili zrealizowania maksymalnego obciążenia			
srebra w kompozycie		próbk	iε _{0,} %		
<i>u_{AgT}</i> , ppm	$\sigma_u = 0,1 \text{ MPa}$	$\sigma_u = 0,2 \text{ MPa}$	$\sigma_u = 0,4$ MPa	$\sigma_u = 0,6 \text{ MPa}$	
0	$8,70\pm0,15^{a}$	$14,77\pm0,46^{a}$	24,34±0,41 ^a	31,6±60,86 ^a	
10	8,93±0,18 ^a	15,53±0,54 ^a	25,06±0,95 ^a	31,50±0,41 ^a	
20	$9,77\pm0,28^{b}$	$17,15\pm0,48^{b}$	28,78±0,73 ^b	34,03±1,20 ^b	
40	10,50±0,43°	18,91±0,68°	30,56±1,09 ^c	36,33±0,97c	
80	$16,63\pm0,47^{d}$	$26,30\pm0,77^{d}$	39,28±0,55 ^d	$50,33\pm1,12^{d}$	
120	22,77±0,42 ^e	33,81±0,98 ^e	46,26±0,93 ^e	56,94±1,51 ^e	
200	26,99±0,47 ^f	39,41±1,00 ^f	52,57±1,06 ^f	60,06±1,05 ^f	
*Średnie z takimi samymi małymi literami (a-f) w indeksie górnym dla danej kolumny nie różnią się od					
siebie w sposób statystyczi	nie istotny (p>0,05)				

Tablica 4.23. Rezultaty oceny statystycznej testem ANOVA wpływu u_{AgT} na wartości średnie współczynników opisujących zmiany odkształceń w pierwszych 5 s obciążenia ($\varepsilon_{5/0}$) oraz po kolejnych 25 s ($\varepsilon_{20/5}$) ($n \le 0.05$)

Czynnik	Naprężenie umowne σ _u , MPa	Źródło wariancji	Suma kwadratów	Stopnie swobody	Średnie kwadraty	Wartość statystyki Fishera	р
	0,1	u_{AgT}	0,02	6	0,00	45,55	<0,0001
C	0,2	u_{AgT}	0,01	6	0,00	10,32	<0,0001
ε _{5/0}	0,4	u_{AgT}	0,00	6	0,00	2,30	0,0621
	0,6	u_{AgT}	0,00	6	0,00	7,62	0,0001
	0,1	u_{AgT}	0,00	6	0,00	5,47	0,0008
E _{30/5}	0,2	u_{AgT}	0,00	6	0,00	2,73	0,0324
	0,4	u_{AgT}	0,00	6	0,00	7,85	0,0001
	0,6	u_{AgT}	0,00	6	0,00	2,59	0,0399

0,4 MPa nie wykazano statystycznie istotnego wpływu u_{AgT} na wartości współczynników $\varepsilon_{5/0}$, ale przy naprężeniu 0,6 MPa nanokompozyty o dwóch najwyższych u_{AgT} charakteryzowały się współczynnikiem $\varepsilon_{5/0}$ istotnie mniejszym niż materiały o mniejszym u_{AgT} . Średnie wartości współczynnika $\varepsilon_{30/5}$ zestawiono w tablicy 4.25. Wartości te zmieniały się podobnie jak współczynnika $\varepsilon_{30/5}$, ale siła odnotowanych zależności była słabsza, niż dla $\varepsilon_{5/0}$. Wartości współczynników $\varepsilon_{30/5}$ mieściły się w wąskim zakresie od 1,009 do 1,039. Wskazuje to na konieczność zachowania rezerwy w interpretacji rezultatów testów statystycznych.

Wykazano istotną statystycznie zależność między średnimi wartościami współczynnika $\varepsilon_{1od/120}$, a u_{AgT} i σ_u oraz odmienną reakcję badanej zmiennej na jeden czynnik, przy zmianie

opisującego wzrosi buksziurceniu po pierwszych pięciu sekunauch obelązeniu				
Udział nanocząstek	Współczynni	ik wzrostu odksz	tałcenia po pierw	vszych pięciu
srebra w kompozycie		sekundach ol	bciążenia ε _{5/0}	
u_{AgT} , ppm	$\sigma_u = 0,1$ MPa	$\sigma_u = 0,2 \text{ MPa}$	$\sigma_u = 0,4$ MPa	$\sigma_u = 0,6 \text{ MPa}$
0	$1,07\pm0,01^{a}$	$1,05\pm0,01^{a}$	1,05±0,00	$1,04\pm0,00^{a}$
10	$1,08\pm0,00^{b}$	$1,05\pm0,00^{a}$	1,05±0,02	$1,03\pm0,00^{a}$
20	1,09±0,01 ^b	1,05±0,01 ^a	1,04±0,00	1,03±0,01 ^{ab}
40	$1,09\pm0,01^{b}$	$1,07\pm0,02^{b}$	1,05±0,02	$1,03\pm0,00^{ab}$
80	1,09±0,01 ^b	$1,06\pm0,00^{a}$	1,05±0,00	$1,02\pm0,01^{bc}$
120	$1,13\pm0,01^{\circ}$	$1,08\pm0,00^{b}$	1,04±0,00	$1,01\pm0,00^{c}$
200	1,13±0,01°	$1,08{\pm}0,00^{b}$	1,04±0,00	$1,01\pm0,00^{c}$
*Średnie z takimi samymi i siehie w sposóh statystyczn	*Średnie z takimi samymi małymi literami (a-c) w indeksie górnym w danej kolumnie nie różnią się od siebie w sposóh statystycznie istaty ($n > 0.05$)			

Tablica 4.24. Wartości średnie wraz z odchyleniami standardowymi współczynnika opisującego wzrost odkształcenia po pierwszych pięciu sekundach obciążenia*

Tablica 4.25. Wartości średnie wraz z odchyleniami standardowymi współczynnika opisującego wzrost odkształcenia między piątą a trzydziestą sekundą po zrealizowaniu obciążenia*

Udział nanocząstek	Współczynnik	wzrostu odkształ	cenia między pią	tą a trzydziestą
srebra w kompozycie	seku	indą po zrealizov	vaniu obciążenia	E 30/5
u_{AgT} , ppm	$\sigma_u = 0,1$ MPa	$\sigma_u = 0,2 \text{ MPa}$	$\sigma_u = 0,4$ MPa	$\sigma_u = 0,6 \text{ MPa}$
0	1,028±0,004 st	$1,016\pm0,006^{t}$	1,012±0,001 ^{vyz}	1,010±0,001
10	$1,030\pm0,003^{t}$	1,013±0,001 ^x	1,011±0,001 ^{ux}	1,015±0,010 ^{vx}
20	$1,027\pm0,004^{u}$	$1,020\pm0,008^{uvx}$	$1,013\pm0,000^{st}$	1,009±0,001
40	1,025±0,004 ^{vx}	$1,016\pm0,002^{y}$	1,013±0,001 ^{uv}	1,012±0,001 ^{yz}
80	1,025±0,001 ^{yz}	1,017±0,001 ^z	1,014±0,001 ^{xyz}	1,011±0,009
120	1,033±0,015 ^{sxy}	$1,019\pm0,010^{v}$	1,010±0,002 ^{uy}	1,005±0,001 ^{vy}
200	$1,039\pm0,007^{tuvz}$	1,024±0,001 ^{tuyz}	1,010±0,002 ^{stvz}	1,005±0,001 ^{xz}
*Średnie z takimi samyn	ni małymi literam	i (s-z) w indeksie	górnym w danej	kolumnie różnią
sie od siebie w sposób stat	vstvcznie istotnv (p<	<0,05)		

poziomu drugiego czynnika (tablica 4.26). Wpływ u_{AgT} na uzyskane średnie wartości $\varepsilon_{1od/120}$ był blisko 15 krotnie większy niż zastosowanego σ_u . Średnie wartości współczynnika $\varepsilon_{1od/120}$ (tablica 4.27) wzrastały wraz ze zwiększaniem u_{AgT} dla określonych wartości σ_u . Na postawie przeprowadzonego testu post-hoc stwierdzono dla σ_u wynoszącego 0,1 MPa statystycznie istotne różnice współczynnika między UG a otrzymanymi kompozytami. Dla σ_u wynoszącego 0,1 MPa w zakresie u_{AgT} od 0 do 80 ppm oraz dla σ_u wynoszących 0,2; 0,4 i 0,6 MPa w zakresie u_{AgT} od 0 do 40 ppm wartości współczynników uzyskanych przy określonym naprężeniu były bardzo zbliżone do siebie. Mieściły się w zakresie od 0,1 do 0,3, ale wyższe wartości notowano przy niższych wartościach σ_u (0,1 MPa). Wyniki te należy rozpatrywać wspólnie z rezultatami pomiarów ε_{1od} , bowiem uzyskane większe wartości odkształceń ε_{120} . Dalsze zwiększanie u_{AgT} powodowało znaczny wzrost średnich wartości $\varepsilon_{1od/120}$ dla wszystkich σ_u , przy czym różnice wartości współczynnika $\varepsilon_{1od/120}$ uzyskane dla próbek o różnych u_{AgT} były tym większe, im większa była wartość przyłożonego σ_u .

Tablica 4.26. Rezultaty oceny statystycznej testem ANOVA (p<0,05) wpływu u_{AgT} i σ_u na średnie wartości współczynnika opisującego zdolność próbek do odzyskania pierwotnej postaci w pierwszej sekundzie odciażania

	Suma kwadratów	Stopnie swobody	Średnie kwadraty	Wartość statystyki Fishera	р
$\sigma_{\rm u}$	0,10	3	0,03	73,22	<0,0001
u_{AgT}	2,81	6	0,47	1078,55	<0,0001
$\sigma_u \times u_{AgT}$	0,38	18	0,02	48,93	<0,0001

Tablica 4.27. Wartości średnie z odchyleniami standardowymi współczynnika opisującego zdolność próbek do odzyskania pierwotnej postaci w pierwszej sekundzie odciążania*

Udział nanocząstek	Współczynn	Współczynnik zdolności próbek do odzyskania pierwotnej			
srebra w kompozycie	postaci	w pierwszej seku	indzie odciążania	ιε _{1od/120}	
u_{AgT} , ppm	$\sigma_u = 0,1$ MPa	$\sigma_u = 0,2 \text{ MPa}$	$\sigma_u = 0,4$ MPa	$\sigma_u = 0,6 \text{ MPa}$	
0	$0,24{\pm}0,02^{A,a}$	0,16±0,01 ^{B,a}	0,10±0,01 ^{C,a}	0,10±0,01 ^{C,a}	
10	$0,30\pm0,03^{A,b}$	$0,20\pm0,01^{B,b}$	$0,14\pm0,04^{C,b}$	0,12±0,01 ^{C,a}	
20	$0,27\pm,02^{A,c}$	0,20±0,01 ^{B,b}	$0,12\pm0,00^{C,ab}$	0,13±0,01 ^{C,a}	
40	$0,28\pm0,01^{A,bc}$	$0,18\pm0,02^{B,ab}$	$0,12\pm0,01^{C,ab}$	0,11±0,01 ^{C,a}	
80	$0,28\pm0,02^{AB,c}$	$0,29\pm0,00^{A,c}$	$0,25\pm0,00^{BC,c}$	0,24±0,03 ^{C,c}	
120	0,41±0,03 ^{A,d}	0,41±0,03 ^{A,d}	$0,46\pm0,02^{B,d}$	$0,48\pm0,02^{\mathrm{B,d}}$	
200	$0,47\pm0,04^{A,e}$	$0,46\pm0,02^{A,e}$	$0,64\pm0,03^{B,e}$	0,60±0,03 ^{C,e}	
*Średnie z takimi samymi dużymi literami w indeksie górnym (A-E) dla danego wiersza					
oraz z takimi samymi małymi literami (a-e) w indeksie górnym dla danej kolumny nie różnią się od					
siebie w sposób statystyczn	tie istotny ($p>0,05$)				

Wykazano silną zależność między średnimi wartościami ε_{1od} , a u_{AgT} i wartością przyłożonego σ_u . Istotną statystycznie była interakcja obydwóch czynników na badaną zmienną (tablica 4.28). Zwiększanie u_{AgT} i σ_u . powodowało wzrost zarejestrowanych wartości ε_{1od} (tablica 4.29), przy czym wzrost wartości ε_{1od} wywołany zwiększeniem jednego z czynników, był większy przy jednoczesnym zwiększeniu drugiego czynnika. Graficzną interpretację omawianych zależności przedstawiono na rysunku 4.24. Przeprowadzany test post-hoc wykazał, że UG oraz nanokompozyt o u_{AgT} wynoszącym 10 ppm i nanokompozyty o u_{AgT} wynoszącym od 10 do 40 ppm nie różniły się w sposób statystycznie istotny średnimi wartościami ε_{1od} dla poszczególnych wartości naprężeń. W obrębie danego u_{AgT} (z powyższego zakresu) odnotowano różnice między wartościami ε_{1od} uzyskanymi przy σ_u 0,1 i 0,6 MPa. Wartości ε_{1od} mieściły się w zakresie 2,24 do 4,3 %, co oznacza, że już po pierwszej sekundzie od rozpoczęcia odciążania pozornie trwałe odkształcenia były bardzo małe (na poziomie setnych części milimetra). Dalsze zwiększanie u_{AgT} powodowało wyraźny wzrost wartości współczynnika ε_{1od} . W zakresie u_{AgT} wynoszących 80 do 200 ppm próbki różniły się średnimi wartości

Tablica 4.28. Rezultaty oceny statystycznej testem ANOVA (p < 0,05) wpływu u_{AgT} i σ_u na średnie wartości odkształceń w 1 s od zdjęcia obciążenia (ε_{Iod})

	Suma kwadratów	Stopnie swobody	Średnie kwadraty	Wartość statystyki Fishera	р
$\sigma_{\rm u}$	1124,91	3	374,97	657,38	<0,0001
u_{AgT}	10832,76	6	1805,46	3165,27	<0,0001
$\sigma_{u} \times u_{AgT}$	1617,33	18	89,85	157,52	<0,0001

Tablica 4.29. Wartości średnie wraz z odchyleniami standardowymi odkształceniaw 1 s od zdjęcia obciążenia*

Udział nanocząstek	Odkształcenie po 1 s od zdjęcia obciążenia ϵ_{1od} , %			
srebra w kompozycie u_{AgT} , ppm	$\sigma_u = 0,1$ MPa	$\sigma_u = 0,2 \text{ MPa}$	$\sigma_u = 0,4$ MPa	$\sigma_u = 0,6 \text{ MPa}$
0	2,27±0,11 ^{A,a}	2,53±0,23 ^{AB,a}	2,71±0,25 ^{AB,a}	3,35±0,33 ^{B,a}
10	3,08±0,29 ^{A,ab}	3,27±0,15 ^{AB,ab}	3,18±0,13 ^{AB,ab}	4,04±0,31 ^{B,ab}
20	3,04±0,25 ^{A,ab}	3,62±0,17 ^{AB,b}	3,74±0,17 ^{AB,b}	4,45±0,39 ^{B,b}
40	$3,32\pm0,09^{A,b}$	3,80±0,33 ^{AB,b}	3,96±0,38 ^{AB,b}	4,30±0,24 ^{B,b}
80	5,15±0,36 ^{A,c}	8,29±0,27 ^{B,c}	10,69±0,24 ^{C,c}	12,76±1,49 ^{D,c}
120	$11,04\pm0,89^{A,d}$	$15,32\pm0,76^{B,d}$	22,19±1,17 ^{C,d}	27,65±1,04 ^{D,d}
200	15,10±1,09 ^{A,e}	20,32±1,29 ^{B,e}	35,23±1,86 ^{C,e}	36,90±1,52 ^{D,e}
*Średnie z takimi samymi dużymi literami w indeksie górnym (A-D) dla danego wiersza oraz z takimi				
samymi małymi literami (a-e) w indeksie górnym dla danej kolumny nie różnią się od siebie w sposób				
statystycznie istotny ($p>0$,	05)			

 ε_{1od} między sobą i od próbek materiałów o mniejszym udziale masowym nanocząstek srebra. Także wielkość zastosowanego σ_u silnie różnicowała średnie. Zakres średnich wartości ε_{1od} wynosił od 5,15 % (80 ppm, 0,1 MPa) do 36,90 % (200 ppm, 0,6 MPa).

Wykazano silną zależność między średnimi wartościami ε_{30od} , a u_{AgT} i wartością przyłożonego σ_u oraz istotną statystycznie interakcję obydwóch czynników na badaną zmienną (tablica 4.30). Uzyskane rezultaty zestawiono w tablicy 4.31. Graficzną interpretację omawianych zależności przedstawiono na rysunku 4.25. Na podstawie testu post-hoc wykazano, że próbki wykonane z materiału UG oraz nanokompozytów o u_{AgT} od 10 do 40 ppm,

Rysunek 4.24. Wpływ udziału masowego nanocząstek srebra na wartości odkształceń w pierwszej sekundzie od rozpoczęcia odciążania dla różnych wartości naprężeń umownych; markerami zaznaczono przedział ufności

Tablica 4.30. Rezultaty oceny statystycznej testem ANOVA (p < 0,05) wpływu u_{AgT} i σ_u na średnie wartości odkształceń po 30 s od zdjęcia obciążenia (ε_{30od})

	Suma kwadratów	Stopnie swobody	Średnie kwadraty	Wartość statystyki Fishera	р
$\sigma_{\rm u}$	122,97	3	40,99	120,55	<0,0001
u_{AgT}	1117,79	6	186,30	547,88	<0,0001
$\sigma_{u} \times u_{AgT}$	180,78	18	10,04	29,54	<0,0001

bez względu na wartość wcześniej przyłożonego σ_u , nie różniły się między sobą średnimi wartościami ε_{30od} (1,75 do 2,62 %). Dalsze zwiększanie u_{AgT} powodowało wzrost zarejestrowanych wartości ε_{30od} , przy czym reakcja na zwiększanie udziału nanosrebra była tym

Rysunek 4.25. Wpływ udziału masowego nanocząstek srebra na wartości odkształceń w trzydziestej sekundzie od rozpoczęcia odciążania dla różnych wartości naprężeń umownych; markerami zaznaczono przedział ufności

	1	<u> </u>			
Udział nanocząstek	Odkształ	Odkształcenie po 30 s od zdjęcia obciążenia ϵ_{30od} , %			
u_{AgT} , ppm	$\sigma_u = 0,1$ MPa	$\sigma_u = 0,2 \text{ MPa}$	$\sigma_u = 0,4$ MPa	$\sigma_u = 0,6 \text{ MPa}$	
0	1,75±0,15 ^{A,a}	1,83±0,30 ^{A,a}	1,71±0,22 ^{A,ab}	2,19±0,27 ^{A,ab}	
10	1,90±0,20 ^{A,a}	1,79±0,26 ^{A,a}	1,58±0,13 ^{A,a}	2,22±0,06 ^{A,ab}	
20	1,91±0,25 ^{A,a}	1,93±0,23 ^{A,a}	2,24±0,29 ^{AB,b}	2,62±0,56 ^{B,a}	
40	1,84±0,19 ^{A,a}	2,33±0,22 ^{A,a}	1,81±0,36 ^{A,ab}	1,86±0,30 ^{A,b}	
80	2,85±0,30 ^{A,b}	3,26±0,28 ^{A,b}	4,92±0,55 ^{B,c}	5,64±1,29 ^{B,c}	
120	4,20±0,27 ^{A,c}	$5,60\pm0,26^{B,c}$	8,22±0,68 ^{C,d}	9,18±1,17 ^{D,d}	
200	5,74±0,33 ^{A,d}	$7,46\pm0,84^{B,d}$	$13,05\pm1,08^{C,e}$	12,28±1,49 ^{D,e}	
*Średnie z takimi samymi dużymi literami w indeksie górnym (A-D) dla danego wiersza					
oraz z takimi samymi małymi literami (a-e) w indeksie górnym dla danej kolumny nie różnią się od					
siebie w sposób statystyczn	<i>tie istotny (p>0,05)</i>				

Tablica 4.31. Wartości średnie wraz z odchyleniami standardowymi odkształcenia po 30 s od zdjęcia obciążenia*

silniejsza, im większa była wartość zastosowanego σ_u . Maksymalne średnie wartości ε_{30od} uzyskane dla próbek o u_{AgT} wynoszącym 200 ppm wynosiły 13 %, były więc wyraźnie mniejsze niż po pierwszej sekundzie.

Następnie przeprowadzono ocenę wartości pracy podczas cyklicznego ściskania. Przykładowe pętle histerezy uzyskane w pierwszym i siódmym cyklu przedstawiono na rysunku 4.26. Przeprowadzone analizy statystyczne (tablica 4.32) wykazały zależność pracy dyssypacji w_d od u_{AgT} oraz od numeru cyklu, przy czym wpływ u_{AgT} był około trzydziestokrotnie silniejszy w kierunku zwiększenia wartości w_d , niż numeru cyklu. Istotny statystycznie był także wpływ na wartości w_d wzajemnego oddziaływania u_{AgT} i liczby cykli. W tablicy 4.33. zestawiono średnie wartości prac dyssypacji obliczonych na podstawie pętli histerezy z cyklu pierwszego i siódmego. Graficzną ilustrację omawianych zależności przedstawiano na rysunku 4.27. Przeprowadzony test post-hoc wykazał, że próbki tworzywa UG i nanokompozytu o u_{AgT} 10 ppm nie różniły się od siebie w sposób statystycznie istotny średnimi wartościami w_d , przy czym średnich wartości w_d nie różnicował także numer cyklu, w którym przeprowadzano pomiar. Począwszy od udziału nanocząstek srebra 20 ppm praca

Tablica 4.32. Rezultaty oceny statystycznej testem ANOVA (p < 0,05) wpływu u_{AgT} i numeru cyklu, w którym przeprowadzano pomiar, na wartość pracy dyssypacji

	Suma kwadratów	Stopnie swobody	Średnie kwadraty	Wartość statystyki Fishera	р
u_{AgT}	29911,43	6	4985,24	4504,95	<0,0001
numer cyklu	169,51	1	169,51	153,18	<0,0001
$u_{AgT} \times$ numer cyklu	218,10	6	36,35	32,85	<0,0001

Tablica 4.33. Wartości średnie pracy dyssypacji (w_d) wraz z odchyleniami standardowymi w pierwszym i siódmym cyklu obciążania*

Udział nanocząstek srebra	Praca dyssypacji w _d , ×10 ⁻⁴ , J				
w kompozycie <i>u_{AgT}</i> , ppm	1 cykl	10 cykl			
0 ppm	6,15±0,22 ^{A,a}	5,93±0,14 ^{A,a}			
10 ppm	6,95±0,31 ^{A,a}	6,52±0,13 ^{A,a}			
20 ppm	9,31±0,33 ^{A,b}	9,12±0,21 ^{A,b}			
40 ppm	11,75±0,48 ^{A,c}	11,14±0,39 ^{A,c}			
80 ppm	27,24±0,93 ^{A,d}	22,99±0,91 ^{B,d}			
120 ppm	$51,02\pm1,25^{A,e}$	44,83±1,94 ^{B,e}			
200 ppm	$66,64{\pm}1,97^{A,f}$	$56,74\pm1,96^{B,f}$			
*Średnie z takimi samymi dużymi literami w indeksie górnym (A-B) dla każdego wiersza oraz takimi					
samymi małymi literami (a-f) w indeksie górnym dla każdej kolumny nie różnią się od siebie w sposób					
statystycznie istotny $(p>0,05)$					

Rysunek 4.26. Przykładowe charakterystyki naprężeniowo-odkształceniowe (1 i 7 cykl) uzyskane dla tworzywa UG (a) oraz dla nanokompozytów o u_{AgT} 10 ppm (b); 20 ppm (c); 40 ppm (d); 80 ppm (e); 120 ppm (f); 200 ppm (g)

Rysunek 4.27. Wpływ udziału masowego nanocząstek srebra na wartości pracy dyssypacji w pierwszym i siódmym cyklu obciążania; markerami zaznaczono przedział ufności

dyssypacji wzrastała wraz ze zwiększaniem u_{AgT} . Przykładowo, nanokompozyt o u_{AgT} wynoszącym 40 ppm rozpraszał blisko dwukrotnie więcej energii niż tworzywo UG. Wzrost ten był szczególnie wyraźny dla udziałów nanosrebra od 80 ppm – zwiększenie udziału nanocząstek srebra z 40 do 80 ppm pozwoliło rozproszyć ponad dwuipółkrotnie, a z 40 do 200 ppm ponad sześciokrotnie więcej energii. Średnie wartości pracy w_d w pierwszym i siódmym cyklu różniły się między sobą w sposób statystycznie istotny, przy czym w przypadku u_{AgT} 20 do 40 ppm różnice te były nieznaczne i mieściły się w zakresie od 2 do 5 %, natomiast dla udziału 80 do 200 ppm odnotowano zmniejszenie średnich wartości pracy dyssypacji o 12 do 16 %. Porównanie przebiegu krzywych obciążania charakterystyk naprężeniowo-odkształceniowych w 1 i 7 uzyskanych dla nanokompozytów o u_{AgT} wynoszących 80 do 200 ppm (rys. 4.26 e,f,g) wskazuje na wzrost sztywności próbek w kolejnych cyklach.

Następnie przeprowadzono ocenę naprężeń relaksacji podczas ściskania. Przykładowe krzywe relaksacji przedstawiono na rysunku 4.28. Przeprowadzone analizy statystyczne wykazały zależność średnie wartości naprężeń względnych relaksacji σ_w od u_{AgT} i czasu oraz istotny statystycznie wpływ wzajemnego oddziaływania u_{AgT} i czasu na wartości σ_w (tablica 4.34).

Rysunek 4.28. Przykładowe krzywe relaksacji uzyskane dla próbek tworzywa UG oraz otrzymanych nanokompozytów

Tablica 4.34. Rezultaty oceny statystycznej testem ANOVA (p < 0,05) wpływu u_{AgT} i czasuna wartości względnych naprężeń relaksacji (σ_w)

	Suma kwadratów	Stopnie swobody	Średnie kwadraty	Wartość statystyki Fishera	р
u_{AgT}	24231,09	6	4038,51	1363,37	<0,0001
czas	7799,07	6	1299,85	438,82	<0,0001
$u_{AgT} \times czas$	557,50	36	15,49	5,23	<0,0001

 Tablica 4.35. Wartości średnie wraz z odchyleniami standardowymi względnych naprężeń relaksacji zmierzone po 5 s oraz ½, 2, 10, 30, 60 i 120 min*

Udział nanoczastek	Względne naprężenia relaksacji σ_{w} , %									
srebra <i>u_{AgT}</i> , ppm	5 s	30 s	2 min	10 min	30 min	60 min	120 min			
0 ppm	93,0±0,6 ^{A,a}	$88,7\pm1,0^{B,a}$	85,7±1,8 ^{C,a}	83,8±2,0 ^{CD,a}	81,7±2,6 ^{DE,a}	80,0±2,4 ^{EF,a}	79,5±2,5 ^{F,a}			
10 ppm	91,3±1,3 ^{A,ab}	86,9±1,0 ^{B,a}	83,9±1,0 ^{C,a}	80,9±1,2 ^{D,b}	79,1±1,0 ^{DE,b}	78,1±1,0 ^{E,a}	77,6±0,9 ^{E,a}			
20 ppm	90,4±1,7 ^{A,b}	86,3±1,6 ^{B,a}	83,6±1,4 ^{C,a}	81,2±1,4 ^{D,b}	79,5±1,4 ^{DE,b}	78,5±1,5 ^{E,a}	77,7±1,6 ^{E,a}			
40 ppm	91,0±1,4 ^{A,ab}	$86,7\pm1,3^{B,a}$	84,4±1,2 ^{C,a}	81,6±1,4 ^{D,b}	79,8±1,9 ^{DE,ab}	78,5±1,8 ^{EF,a}	77,6±1,5 ^{F,a}			
80 ppm	86,3±1,6 ^{A,c}	79,9±1,4 ^{B,b}	75,9±1,4 ^{C,b}	72,5±1,3 ^{D,c}	70,7±1,2 ^{DE,c}	69,5±1,2 ^{EF,b}	68,5±1,3 ^{F,b}			
120 ppm	80,2±1,5 ^{A,d}	73,2±1,5 ^{B,c}	68,5±1,5 ^{C,c}	65,2±2,1 ^{D,d}	62,2±2,5 ^{E,d}	$60,4\pm2,2^{EF,c}$	59,4±2,2 ^{F,c}			
200 ppm	72,6±3,0 ^{A,e}	$63,1\pm3,0^{B,d}$	56,9±2,3 ^{C,d}	52,8±2,2 ^{D,e}	50,2±1,8 ^{E,e}	48,4±1,7 ^{EF,d}	47,0±1,9 ^{F,d}			
Średnie z takimi samymi dużymi literami w indeksie górnym (A-F) dla każdego wiersza oraz takimu										
samymi małymi literami (a-e) w indeksie górnym dla każdej kolumny nie różnią się od siebie w sposób										
statystycznie istotny ($p > 0.05$)										

W tablicy 4.35 zestawiono średnie wartości σ_w odczytane w wybranych punktach czasowych z krzywych relaksacji. Przeprowadzony test post-hoc wykazał, że w przypadku próbek nanokompozytów o u_{AoT} 10 do 40 ppm średnie wartości σ_{w} w poszczególnych punktach czasowych nie różniły się od siebie w sposób statystycznie istotny. Natomiast w części punktów czasowych średnie wartości σ_w uzyskane dla kompozytów były w sposób statystycznie istotny niższe od wartości dla UG, aczkolwiek różnice te były bardzo niewielkie (na pograniczu statystycznej istotności). Największy spadek naprężenia w czasie odnotowano po 5 s trwania eksperymentu, (średnie wartości $\sigma_{\rm w}$ wynosiły od 90,4 do 93,0 %). Relaksacja zachodziła intensywnie przez pierwsze dwie minuty, po których σ_w wynosiło 83,6 do 85,7 %. Relaksacja naprężeń w dalszej fazie eksperymentu była bardzo powolna – różnice między średnimi wartościami σ_w w 2 i 10 min, w 10 i 30 min oraz w 30, 60 i 120 min nie były statystycznie istotne. Średnie wartości σ_w po dwóch godzinach wynosiły 77,6 do 79,5 %. Zwiększanie u_{AgT} w zakresie od 80 do 200 ppm prowadziło do znacznego obniżania średnich wartości σ_w w poszczególnych punktach czasowych. Dla nanokompozytu o u_{AgT} wynoszącym 80 ppm po upływie 2 min średnia wartość σ_w wynosiła 75,9 %, ale od 10 min relaksacja zachodziła już zdecydowanie wolniej, bowiem różnice między średnimi wartościami $\sigma_w \ge 10$ i 30 min, 30 i 60 oraz 60 i 120 nie były statystycznie istotne. Po upływie 120 min średnia wartość σ_w wynosiła 68,5 %. Zwiększenie u_{AgT} do 120 i 200 ppm spowodowało bardzo wyraźny spadek średnich wartości σ_w , odpowiednio do 65,2 i 52,8 %. po pierwszych 2 min. Inaczej niż w przypadku próbek wykonanych z materiałów o niższych wartościach u_{AqT} , w dalszej fazie eksperymentu relaksacja naprężeń nadal osiągała znaczne wartości. Statystycznie istotnych różnic nie odnotowano dopiero między średnimi σ_w w 30 i 60 min oraz w 60 i 120 min. Po 120 min średnie wartości σ_w wynosiły odpowiednio 59,4 i 47,0 %.