Przeprowadzone badania pozwoliły na wybór najkorzystniejszych parametrów procesu lutowania:

- temperatury lutowania 1065°C (1338 K),
- czasu lutowania t = 10 min.,
- grubości taśmy ok. 30 μm.

Wyniki badań wytrzymałościowych jednoznacznie wskazują na celowość stosowania w połączeniach lutowanych jako wkładek taśm o mniejszej grubości, w tym przypadku o grubości 30 µm, gdyż daje to gwarancję uzyskania złączy o większej wytrzymałości zarówno na rozciąganie, jak i na ścinanie.

Wyniki te pozostają w zgodzie z ogólnymi zasadami konstruowania połączeń lutowanych, zmierzającymi do maksymalnego zmniejszenia szerokości szczeliny pomiędzy łączonymi elementami na tyle jednak, aby nie wystąpiło niebezpieczeństwo niewypełnienia szczeliny lutem.

3. Otrzymywanie, struktura i własności nanokrystalicznych stopów typu Fe-Hf-B

W ostatnich latach obserwuje się wyraźne zainteresowanie materiałami nanostrukturalnymi, tzn. takimi, których struktura kształtowana jest w skali nanometrycznej. Są to przede wszystkim nowe materiały magnetycznie miękkie charakteryzujące się korzystnym połączeniem takich własności jak: duża indukcja nasycenia, duża przenikalność magnetyczna, małe pole koercji, prawie zerowa magnetostrykcja oraz małe straty z pętli histerezy [33-38]. Stopy Fe-Hf-B należą do tej grupy materiałowej (rys. 11).

Otrzymywanie nanokrystalicznej struktury w stopie typu Fe-Hf-B jest wypadkową wielu czynników.

Stopy skonstruowano na osnowie ferromagnetycznego pierwiastka, którym jest żelazo o stężeniu od 85÷92% at., zapewniającego uzyskanie wysokiej indukcji nasycenia. Pozostałe pierwiastki stopowe, tj. bor i hafn ułatwiają tworzenie struktury amorficznej w prekursorze. Hafn, uznawany za bardzo rzadki pierwiastek, należy do grupy tytanowców, odgrywa określoną rolę zarówno w procesie otrzymywania taśm o strukturze amorficznej, jak i podczas ich obróbki cieplnej [39]. W procesie odlewania taśm amorficznych z fazy ciekłej w określonej

mierze zwiększa zdolność do zeszklenia stopu, natomiast w procesie obróbki cieplnej stabilizuje obszary fazy amorficznej powstałe w stopie po jego częściowej krystalizacji [40]. Ponadto ze względu na lokalizację na granicach ziarn nanometrycznej fazy α Fe w procesie krystalizacji oraz duży promień atomowy, atomy hafnu hamują ich wzrost poprzez spowalnianie dyfuzji atomów boru [40].

Technologia wytwarzania, która warunkuje uzyskanie litych materiałów nanokrystalicznych na osnowie żelaza, składa się z operacji wytworzenia amorficznej taśmy oraz operacji obróbki cieplnej, której stosownie dobrane parametry zapewniają przebieg tzw. krystalizacji kontrolowanej. Uzyskana w ten sposób struktura jest dwufazowa, złożona z amorficznej osnowy i nanometrycznej wielkości fazy krystalicznej. Wariantem technologicznym wymienionej metody wytwarzania materiału nanokrystalicznego jest wyeliminowanie drugiej operacji. Realizacja wymienionych technologii wymaga uzyskania określonych parametrów zapewniających otrzymanie zamierzonych struktur. Jednak nie zawsze będące w dyspozycji urządzenia technologiczne mogą spełnić te wymagania. Oba warianty technologiczne mają określone zalety i wady.

Badania technologiczne i poznawcze z zakresu otrzymywania, struktury i własności nanokrystalicznych stopów $Fe_{85,4}Hf_{1,4}B_{13,2}$ oraz $Fe_{92,4}Hf_{4,2}B_{3,4}$ przeprowadzono wykorzystując stopy w postaci litych taśm wytworzonych w Instytucie Metali Nieżelaznych w Gliwicach [38, 41-43]. Odpowiednio spreparowane stopy wyjściowe ponownie topiono i odlewano metodą PFC w atmosferze argonu. Główne parametry procesu były następujące: prędkość liniowa bębna chłodzącego – ok. 30 m·s⁻¹, ciśnienie gazu wypychającego ciekły stop z tygla odlewniczego – 20 kPa. Uzyskano lite taśmy o szerokości 10 mm i grubości 34 µm i 30 µm odpowiednio dla stopów $Fe_{85,4}Hf_{1,4}B_{13,2}$ oraz $Fe_{92,4}Hf_{4,2}B_{3,4}$.

Badania strukturalne taśm prowadzono metodami rentgenografii strukturalnej, mikroskopii elektronowej, spektroskopii mössbauerowskiej. Własności fizyczne badano metodami elektrycznego oporu właściwego i badań magnetycznych [38, 41, 42].

Strukturę nanokrystaliczną w materiale Fe_{85,4}Hf_{1,4}B_{13,2} wytworzono w procesie kontrolowanej krystalizacji wyjściowego stopu amorficznego. Obróbkę cieplną realizowano w próżni w zakresie temperatury od 100°C do 750 °C (373 do 1023 K) w czasie 1 godziny, stosując nagrzewanie ze stopniowaniem 25 K. Wartości umownych temperatur krystalizacji (T_{x1}, T_{x2}) wyznaczono z krzywej izochronicznej rezystywności ρ stosując liniową prędkość grzania 0,42 K·m⁻¹ z pomiarem "in situ". Wyniki przedstawia tablica 2.

Tablica 2. Wartości temperatur krystalizacji $(T_{x1} - \text{temperatura początku pierwszego etapu krystalizacji i <math>T_{x2} - \text{temperatura początku drugiego etapu krystalizacji}) oraz efektywnych energii aktywacji procesu krystalizacji <math>(E_1, E_2 - \text{efektywna energia aktywacji pierwszego i drugiego etapu krystalizacji) stopu Fe_{85,4}Hf_{1,4}B_{13,2}$

T _{x1}		T _{x2}		T_{x2} - T_{x1}	E ₁	E ₂	
K	°C	K	°C	K	eV	eV	
533	260	707	434	174	1,20	1,41	

Proces krystalizacji taśm amorficznych wywołuje zmiany ich struktury oraz wpływa na zmiany własności magnetycznych.

Na podstawie krzywej izochronicznej rezystywności w funkcji temperatury można stwierdzić, że badany stop krystalizuje dwuetapowo. Pierwszy etap krystalizacji rozpoczyna się w temperaturze $T_{x1} = 523$ K (krystalizacja pierwotna) i kończy się w temperaturze $T_{x2} = 703$ K (rys. 12). Powyżej T_{x2} ma miejsce krystalizacja polimorficzna. Energia aktywacji potrzebna do zapoczątkowania pierwszego etapu krystalizacji wynosi $E_1 = 1,73$ eV, a do zapoczątkowania drugiego etapu – $E_2 = 2,50$ eV (tabl. 2).

Rysunek 12. Wykres zmian elektrycznego oporu właściwego "in situ" dla stopu $Fe_{85,4}Hf_{1,4}B_{13,2}$ w funkcji temperatury dla szybkości nagrzewania liniowego 0,42 K·min⁻¹ [38]

Rysunek 13. Wykres znormalizowanej przenikalności magnetycznej w funkcji temperatury wygrzewania T, "in situ" dla stopu $Fe_{85,4}Hf_{1,4}B_{13,2}$ [38]

Stop w stanie wyjściowym "as quenched" jest ferromagnetyczny w temperaturze pokojowej, a temperatura Curie określona ze zmian znormalizowanej przenikalności magnetycznej w funkcji temperatury wygrzewania wynosi 509 K (rys. 13).

W stanie dostarczenia "as quenched" stop ma strukturę amorficzną (rys. 14, tabl. 3). Własności magnetyczne badanego stopu w stanie "as quenched" są następujące: $\mu = 151$, $\Delta \mu/\mu = 8,8$ %, $H_c = 22,7 \text{ A} \cdot \text{m}^{-1}$.

Rysunek 14. Zdjęcie struktury uzyskane w wysokorozdzielczym transmisyjnym mikroskopie elektronowym (HRTEM) amorficznego stopu $Fe_{85,4}Hf_{1,4}B_{13,2}$ w stanie "as quenched" [42]

Obróbka cieplna prowadzona w zakresie temperatur od 373 do 498 K nie powoduje wyraźnych zmian w strukturze stopu. Obserwuje się jednak poprawę własności magnetycznych stopu (tabl. 3). Przebieg zmian przenikalności magnetycznej maksymalnej (rys. 16) uzyskany z krzywych pierwotnych magnesowania (rys. 15) wskazuje na znaczny wzrost przenikalności magnetycznej maksymalnej i w stanie "as quenched" oraz po wygrzewaniu w temperaturze 523 K wynosi ona odpowiednio 19046 przy polu H = 1,1 A·m⁻¹ oraz 37711 przy polu H = 0,99 A·m⁻¹ (tabl. 3).

W strukturze stopu obrabianego cieplnie począwszy od temperatury 623 K obok fazy α Fe zidentyfikowano występowanie faz: FeB, Fe₂₃B₆, Fe₂B, HfB₂ oraz Fe₂Hf (tabl. 3). Obserwowanym zmianom struktury stopu towarzyszą wyraźne zmiany własności magnetycznych.

Gwałtownie spada przenikalność magnetyczna do wartości $\mu = 35$ i wzrasta pole koercji $H_c = 557 \text{ A} \cdot \text{m}^{-1}$ (tabl. 3). Wygrzewanie stopu o strukturze wyjściowej w zakresie temperatury od 723 do 1023 K nie powoduje już zmian w jego składzie fazowym (tabl. 3).

Tablica 3. Zestawienie parametrów obróbki cieplnej oraz skład fazowy, przenikalność μ , polekoercji H_{c} dezakomodacja $\Delta\mu/\mu$ amorficznego stopu $Fe_{85,4}Hf_{1,4}B_{13,2}$

Parametry obróbk	i cieplnej	Skład fazowy		Διμάι	Н		
T _a K	Czas h	stopu	μ	% %	$\mathbf{A} \cdot \mathbf{m}^{-1}$		
"as quenched"			151	8,8	22,7		
373			153	10,8	24,3		
423		A ¹⁾	170	10,4	22,3		
473			190	8,9	21,5		
498			198	7,1	18,3		
523			239	9,2	15,9		
548		$A^{1)} + \alpha Fe$	225	3,8	15,1		
573			210	3,7	40,6		
623	1		35	3,2	557,0		
673			32	1,4	557,0		
723			39	1,1	445,6		
773			95	2,4	87,5		
823		αFe, Fe ₂ B	24	4,3	1193,7		
873		Fe ₂₃ B ₆ , HfB ₂	30	5,5	1281,2		
923		FeB, Fe ₂ Hf	26	6,3	1376,7		
973			10	6,3	1201,6		
1023			12	6,3	2228,2		
$A^{1)}$ – faza amorficzna							

Struktura nanokrystaliczna, otrzymana w wyniku kontrolowanej krystalizacji w temperaturze 523 K ($T_a = T_{x1} \pm 20$ K), składa się z ziaren fazy α Fe o wielkości nanometrycznej do 25 nm i fazy

amorficznej (rys. 17). Wykazuje ona maksymalną przenikalność $\mu = 239$, wysoką polaryzację magnetyczną J = 1,05 T oraz minimalne pole koercji H_c = 15,9 A·m⁻¹ (tabl. 3, rys. 15).

Rysunek 15. Krzywe pierwotne magnesowania stopu $Fe_{85,4}Hf_{1,4}B_{13,2}$ w stanie "as quenched" oraz po wygrzewaniu w temperaturze 523 K [41]

Rysunek 16. Wykres maksymalnej przenikalności magnetycznej stopu $Fe_{85,4}Hf_{1,4}B_{13,2}$ w stanie "as quenched" oraz po wygrzewaniu w temperaturze 523 K [41]

Rysunek 17. Zdjęcie struktury uzyskane w wysokorozdzielczym transmisyjnym mikroskopie elektronowym (HRTEM) amorficznego stopu $Fe_{85,4}Hf_{1,4}B_{13,2}$ po wygrzewaniu w temperaturze $T_a = 523 \text{ K przez 1 h [42]}$

W wyniku zachodzącej w drugim etapie krystalizacji – polimorficznej, począwszy od temperatury 623 K obserwuje się znaczne utwardzenie magnetyczne ($H_c = 557 \div 2228 \text{ A} \cdot \text{m}^{-1}$) w stosunku do struktury uzyskanej po krystalizacji pierwotnej i związane jest z pojawieniem się borków (FeB, Fe₂B, Fe₂3B₆ i HfB₂) w strukturze stopu (tabl. 3).

Proces kontrolowanej krystalizacji, przedstawiony na przykładzie amorficznego stopu $Fe_{85,4}Hf_{1,4}B_{13,2}$, umożliwia wytworzenie struktury nanokrystalicznej. Stwarza to możliwość optymalizacji własności magnetycznych; proces odpowiedzialny za optymalizację jest aktywowany cieplnie i związany z utworzeniem krystalicznej fazy α Fe o nanometrycznej wielkości w osnowie amorficznej. Tak więc optymalne własności magnetycznie miękkie można uzyskać w wyniku obróbki cieplnej rozumianej jako wygrzewanie w temperaturze, która zapewnia uzyskanie najwyższej przenikalności [44, 45].

W stopie $Fe_{92,4}Hf_{4,2}B_{3,4}$ strukturę nanokrystaliczną uzyskano przez bezpośrednie chłodzenie cieczy metalicznej stosując prędkość liniową bębna chłodzącego ok. 30 m·s⁻¹ i ciśnienie gazu wypychającego ciecz z tygla odlewniczego ok. 20 kPa.

Strukturę taśmy stanowią ziarna fazy α Fe rozmieszczone w amorficznej osnowie (rys. 18). Wielkość ziarn fazy α Fe zmienia się w zakresie od ok. 5 do 10 nm. Dyfraktogram otrzymany dla stopu Fe_{92,4}Hf_{4,2}B_{3,4} w stanie wyjściowym "as quenched" oprócz typowej dla stopów amorficznej rozmytej i wyraźnie poszerzonej linii dyfrakcyjnej od płaszczyzny (110) dla fazy α Fe ma linię dyfrakcyjną, której położenie odpowiada położeniu piku charakterystycznego dla płaszczyzny (200) α Fe, co należy wiązać z obecnością w składzie fazowym stopu zarówno fazy amorficznej jak i krystalicznej (rys. 19).

Rysunek 18. Zdjęcie struktury uzyskane w wysokorozdzielczym transmisyjnym mikroskopie elektronowym (HRTEM) stopu Fe_{92,4}Hf_{4,2}B_{3,4} w stanie wyjściowym [38]

Rysunek 19. Dyfraktogram stopu $Fe_{92,4}Hf_{4,2}B_{3,4}$ w stanie wyjściowym "as quenched" [38]

Stop jest ferromagnetyczny w temperaturze pokojowej, a temperatura Curie wynosi 480 K (207°C) – rys. 20. Własności magnetyczne ($\mu = 401$, $H_c = 87,5$ A·m⁻¹) oraz elektryczne ($\rho = 1,410 \ \mu\Omega m$) wskazują, że stop w stanie wyjściowym jest ferromagnetyczny o własnościach magnetycznie miękkich.

Rysunek 20. Wykres znormalizowanej przenikalności magnetycznej w funkcji temperatury wygrzewania T "in situ" dla stopu $Fe_{92,4}Hf_{40,2}B_{3,4}$ [38]

Uzyskane widma mössbauerowskie dla badanego stopu mają postać typowych widm zeemanowskich, składających się z kombinacji sześciu poszerzonych linii. W próbce stopu $Fe_{92,4}Hf_{4,2}B_{3,4}$ dobrze separowalna jest składowa L1 o wartości pola H = 33 T charakterystyczna dla wydzieleń fazy α Fe (rys. 21, tabl. 4).

Tablica 4. Zestawienie wyników analizy widm mössbauerowskich metodą dopasowania widmskładowych dla stopu $Fe_{92,4}Hf_{4,2}B_{3,4}$ o strukturze nanokrystalicznej w stanie wyjściowym

"as quenched"

Parametry widm mössbauerowskich											
H, T				IS, mm/s ⁻¹				S, %			
L1	L2	L3	L4	L1	L2	L3	L4	L1	L2	L3	L4
33,0	25,5	22,6	19,2	0,01	0,08	0,04	0,01	4,6	49,5	14,7	31,2
H – nadsubtelne pole magnetyczne											
IS – przesunięcie izomeryczne											
S – udział składowej w polu całkowitym											
L – numer składowej zeemanowskiej											

Rysunek 21. Widmo mössbauerowskie otrzymane dla stopu $Fe_{92,4}Hf_{4,2}B_{3,4}$: a) w stanie wyjściowym "as quenched", b) wyznaczony z tego widma rozkład magnetycznych pól nadsubtelnych P (H) [38]