Zakładając, że udział składowej (L1) w widmie całkowitym jest proporcjonalny do zawartości wydzieleń żelaza w próbce, można oszacować, że zawartość nanokrystalicznej fazy α Fe wynosi 3,8%. Pozostałe składowe L2, L3 i L4 w ogólności opisują obszary fazy amorficznej o różnych uporządkowaniach bliskiego zasięgu związanych z różną koncentracją atomów żelaza i boru, jak również obszary odpowiadające powierzchni rozdziału pomiędzy wydzieleniami fazy α Fe a amorficzną osnową. Należy podkreślić, że zastosowana metoda dopasowania do widma wyjściowego kilku widm składowych w przypadku fazy amorficznej jest metodą bardzo przybliżoną i umożliwia jedynie jakościową analizę wyników. Tym niemniej fakt, że tę metodę udało się zastosować do analizy badanych próbek z niezłym efektem numerycznym, potwierdza wniosek, że wytworzona faza amorficzna jest silnie niejednorodna pod względem składu chemicznego i uporządkowania bliskiego zasięgu [38, 43].

Wyniki przedstawionych badań wskazują, że zastosowane metody wytwarzania umożliwiają uzyskanie struktur nanokrystalicznych w stopach typu Fe-Hf-B. Uzyskane własności magnetyczne są związane z zawartością i wielkością fazy krystalicznej αFe w strukturze nanokrystalicznej. Parametry zaproponowanych metod otrzymywania należy więc zweryfikować w taki sposób, aby otrzymać określony stopień skrystalizowania w stopach oraz stosowną wielkość fazy nanokrystalicznej.

4. Korozja elektrochemiczna amorficznych i nanokrystalicznych stopów Fe₇₈Si₉B₁₃ oraz Fe_{73,5}Si_{13,5}B₉Nb₃Cu₁

Projektowanie i aplikacja materiałów metalicznych związane są z określeniem między innymi ich własności fizycznych, z których jedną z ważniejszych jest odporność korozyjna.

Pod pojęciem korozji rozumiane jest niezamierzone niszczenie struktury materiałów metalowych przez działanie chemiczne lub elektrochemiczne otaczającego środowiska rozpoczynające się od powierzchni materiału [46-51].

Wpływ czynników związanych z korozją, w tym elektrochemiczną, na tworzywa metaliczne jest trudny do wyeliminowania i nie należy go zaniedbywać wytwarzając gotowe wyroby. W wyniku pracy materiałów magnetycznie miękkich, do których zalicza się stop Fe₇₈Si₉B₁₃ oraz Fe_{73,5}Si_{13,5}B₉Nb₃Cu₁, w warunkach atmosfery środowiska korozyjnego powstające na powie-rzchni produkty korozji mogą doprowadzić w określonej mierze do degradacji charakterystyk magnetycznych.

Niezmienność własności magnetycznych tworzyw ma zasadnicze znaczenie podczas eksploatacji podzespołów magnetycznych. Skład chemiczny i historia technologiczna stopów wpływa na ich zachowanie elektrochemiczne funkcji zmiennych parametrów środowiska korozyjnego a w rezultacie – na zmiany ich własności magnetycznych.

Optymalizacja składu chemicznego ze względu na określone własności magnetyczne miękkie nie zawsze może zapewnić stosowną odporność korozyjną w danym środowisku.

Analizowane stopy są przedstawicielami dwóch grup nowoczesnych materiałów magnetycznie miękkich. Stop $Fe_{78}Si_9B_{13}$ jest przedstawicielem grupy jednofazowych materiałów magnetycznych o strukturze amorficznej. Stop $Fe_{73,5}Si_{13,5}B_9Nb_3Cu_1$ należy do grupy stopów o dwufazowej strukturze nanokrystalicznej, która składa się z amorficznej osnowy i ziarn fazy α -Fe(Si) o nanometrycznych rozmiarach. Materiały te podczas pracy urządzeń, w których są stosowane, narażone są na działanie różnych czynników zakłócających stabilność ich pracy (w tym korozji elektrochemicznej).

Wpływ czynników związanych z korozją jest niemal niemożliwy do wyeliminowania. Dlatego podjęto badania w kierunku poznania przebiegu korozji elektrochemicznej oraz jej wpływu na własności magnetyczne tych stopów [52-54].

Dość powszechnie stosowaną metodą w badaniach korozyjnych jest technika potencjodynamiczna, którą zastosowano do określenia potencjału korozyjnego, prędkości korozji i skłonności do pasywacji lub jej braku. Badania prowadzono w 0,5 M roztworze Na₂SO₄ oraz w 0,5 M roztworze NaCl o temperaturach 20°C (293 K), 35°C (308 K) i 70°C (343 K). W wyniku badań potencjodynamicznych zaobserwowano dla stopów Fe₇₈Si₉B₁₃ i Fe_{73,5}Si_{13,5}B₉Nb₃Cu₁, niezależnie od struktury, szybszą korozję w rozcieńczonym wodnym roztworze NaCl w stosunku do szybkości korozji w obecności roztworu wodnego Na₂SO₄. Łatwo rozpuszczający się tlen w 0,5 M roztworze NaCl przyspiesza reakcje rozpuszczania powierzchni. Prędkość korozji v_{kor} żelaza jest największa, gdy stężenie NaCl w wodzie wynosi około 0,5 M. Stężenie takie występuje np. w wodzie morskiej, a przewodność 0,5 M roztworu wodnego NaCl jest znacznie większa niż przewodność czystej wody destylowanej, co również sprzyja przyspieszeniu procesów korozji elektrochemicznej [55-57].

Bez względu na strukturę wieloskładnikowy stop Fe_{73,5}Si_{13,5}B₉Nb₃Cu₁ wykazywał skłonność do pasywacji w roztworze siarczanów i cechował się mniejszą prędkością korozji w obu zastosowanych roztworach korozyjnych w porównaniu do stopu Fe₇₈Si₉B₁₃ (tabl. 5-8, rys. 22-25). Stop Fe₇₈Si₉B₁₃ nie wykazywał skłonności do przejścia w stan pasywny w warunkach prowadzonego eksperymentu (rys. 26-28).

Temperatura obróbki cieplnej, K	Struktura	Temperatura roztworu, K							
		29	93	308		343			
		E _{kor} , mV	v _{kor} , mm/rok	E _{kor} , mV	v _{kor} , mm/rok	E _{kor} , mV	v _{kor} , mm/rok		
"as quenched"	amorficzna	-1095	0,927	-791	0,308	-841	5,084		
523		-1168	0,39	-847	0,625	-889	4,020		
573		-710	0,051	-847	0,423	-870	1,232		
598		-800	0,0348	-833	0,072	-894	1,008		
623	amorficzna po relaksacii	-769	0,0113	-954	0,153	-838	0,569		
648	strukturalnej	-913	0,0408	-812	0,013	-1003	1,775		
673		-809	0,117	-787	0,114	-1060	0,035		
698		-762	1,577	-780	0,561	-838	0,625		
723		-692	1,837	-920	0,253	-835	1,631		
748	nanokrystaliczna:	-1001	9,00	-756	0,062	-1107	3,567		
773	α-Fe(Si) + amorficzna	-689	0,859	-756	0,061	-872	0,343		
798		-868	0,150	-816	0,057	-887	0,63		
823	osnowa	-843	0,055	-972	0,047	-981	0,149		

Tablica 5. Zestawienie wartości parametrów korozyjnych stopu $Fe_{73,5}Si_{13,5}B_9Nb_3Cu_1$ badanegow 0,5 M roztworze Na_2SO_4 otrzymane w oparciu o metodę Sterna-Tafela

Tablica 6. Zestawienie wartości parametrów korozyjnych stopu Fe73,5Si13,5B9Nb3Cu1 badanegow 0,5 M roztworze NaCl otrzymane w oparciu o metodę Sterna-Tafela

Temperatura	Struktura	Temperatura roztworu, K							
obróbki cieplnej, K		293		308		342			
		E _{kor} , mV	v _{kor} , mm/rok	E _{kor} , mV	v _{kor} , mm/rok	E _{kor} , mV	v _{kor} , mm/rok		
"as quenched"	amorficzna	-600	0,119	-602	0,66	-621	1,295		
523	amorficzna po relaksacji strukturalnej	-539	0,231	-529	0,162	-620	1,250		
573		-552	0,1367	-562	0,09	-512	0,138		
598		-552	0,1653	-558	0,069	-575	0,195		
623		-455	0,8039	-426	0,184	-511	0,811		
648		-575	0,357	-548	0,142	-570	0,001		
673		-375	2,89	-534	0,009	-571	0,065		
698		-557	6,649	-557	0,013	-599	0,44		
723		-375	2,498	-384	0,144	-563	1,257		
748	nanokrystaliczna:	-522	2,135	-537	0,033	-554	0,113		
773	α-Fe(Si) + amorficzna	-489	0,122	-474	0,054	-577	0,184		
798		-515	0,124	-510	0,006	-484	0,028		
823	osnowa	-515	0,131	-505	0,005	-487	0,024		

4. Korozja elektrochemiczna amorficznych i nanokrystalicznych stopów ...

Temperatura		Temperatura roztworu, K						
obróbki cieplnei	Struktura	293		308		342		
K	Stutturu	E _{kor} , mV	v _{kor} , mm/rok	E _{kor} , mV	v _{kor} , mm/rok	E _{kor} , mV	v _{kor} , mm/rok	
"as quenched"	amorficzna	-1067	2,052	-1140	3,626	-1026	5,166	
523	amorficzna po relaksacji strukturalnej	-1163	0,94	-1138	2,089	-1066	6,9	
573		-1196	0,137	-1139	1,890	-1049	2,09	
598		-1115	0,357	-1052	1,215	-1106	16,81	
623		-1150	1,215	-998	1,927	-1034	35,2	
648		-1048	1,105	-1193	0,635	-1047	39,44	
673		-1127	0,121	-1102	0,310	-1161	0,981	
698		-1074	0,231	-1100	0,586	-1063	1,932	
723	nanokrystaliczna:	-1132	0,147	-1131	0,164	-1150	5,47	
748	α-Fe(Si) + amorficzna	-1077	0,079	-1123	0,248	-1123	0,983	
773		-1005	0,082	-1073	0,107	-1095	0,882	
798	osnowa	-1016	0,131	-1040	0,123	-1089	0,198	

Tablica 7. Zestawienie wartości parametrów korozyjnych stopu $Fe_{78}Si_9B_{13}$ badanegow 0,5 M roztworze Na_2SO_4 otrzymane w oparciu o metodę Sterna-Tafela

Tablica 8. Zestawienie wartości parametrów korozyjnych stopu Fe78Si9B13 badanegow 0,5 M roztworze NaCl otrzymane w oparciu o metodę Sterna-Tafela

Temperatura		Temperatura roztworu, K						
obróbki cieplnei	Struktura	293		308		342		
K		E _{kor} , mV	v _{kor} , mm/rok	E _{kor} , mV	v _{kor} , mm/rok	E _{kor} , mV	v _{kor} , mm/rok	
"as quenched"	amorficzna	-735	0,987	-717	1,09	-733	1,010	
523	amorficzna po relaksacji strukturalnej	-736	0,895	-756	2,40	-734	1,23	
573		-712	0,442	-886	2,781	-770	1,98	
598		-910	0,368	-867	1,765	-765	2,42	
623		-903	0,364	-690	0,334	-767	2,410	
648		-772	0,164	-983	0,198	-781	2,011	
673		-789	0,041	-674	0,111	-768	1,012	
698		-795	0,117	-684	0,263	-779	1,731	
723	nanokrystaliczna:	-756	0,110	-598	0,292	-744	1,754	
748	α-Fe(Si) + amorficzna	-810	0,185	-600	0,556	-750	1,345	
773		-861	0,080	-558	0,347	-754	1,520	
798	osnowa	-1058	0,047	-603	0,307	-688	0,490	

Rysunek 22. Wykres prędkości korozji w 0,5 M roztworze Na₂SO₄ o temperaturze: 20°C (293 K), 30°C (308 K) i 70°C (342 K) w funkcji obróbki cieplnej stopu $Fe_{78}Si_9B_{13}$

Rysunek 23. Wykres prędkości korozji w 0,5 M roztworze NaCl o temperaturze: 20°C (293 K), 35°C (308 K) i 70°C (343 K) w funkcji obróbki cieplnej stopu Fe₇₈Si₉B₁₃

Rysunek 24. Wykres prędkości korozji w 0,5 M roztworze Na_2SO_4 o temperaturze: 20°C (293 K), 35°C (308 K) i 70°C (343 K) w funkcji obróbki cieplnej stopu $Fe_{73,5}Si_{13,5}B_9Nb_3Cu_1$

Rysunek 25. Wykres prędkości korozji w 0,5 M roztworze NaCl o temperaturze: 20°C (293 K), 35°C (308 K) i 70°C (343 K) w funkcji obróbki cieplnej stopu Fe_{73,5}Si_{13,5}B₉Nb₃Cu₁

Rysunek 26. Wykres krzywej polaryzacji anodowej stopu $Fe_{78}Si_9B_{13}$ w stanie ,, as quenched" otrzymane w 0,5M roztworze Na_2SO_4 o temperaturze 20°C (293 K)

Rysunek 27. Wykres krzywej polaryzacji anodowej stopu $Fe_{78}Si_9B_{13}$ w stanie ,, as quenched" otrzymane w 0,5 M roztworze Na_2SO_4 o temperaturze 35°C (308 K)

Rysunek 28. Wykres krzywej polaryzacji anodowej stopu $Fe_{78}Si_9B_{13}$ w stanie ,,as quenched" otrzymane w 0,5 M roztworze Na₂SO₄ o temperaturze 70°C (343 K)

Wzrost temperatury roztworu korozyjnego do 70°C (343 K) sprzyja zwiększeniu prędkości korozji, przy czym największy wpływ ma na wzrost prędkości korozji stopu Fe₇₈Si₉B₁₃.

Skład chemiczny badanych stopów i struktura decydują o ich odporności korozyjnej. Obecność krzemu i boru w stopie $Fe_{78}Si_9B_{13}$ w ilości 22% at. jest niezbędna dla stabilizacji struktury amorficznej. Bor zdecydowanie pogarsza odporność korozyjną i skłonność do pasywacji.

Stop $Fe_{78}Si_9B_{13}$ zawierający 13% at. boru nie wykazuje zdolności do przejścia w stan pasywny. Krzem rozpuszczający się w żelazie wprowadza się do stopów na osnowie żelaza, aby zwiększyć rezystywność stopu, a tym samym ograniczyć straty związane z przemagnesowywaniem. Krzem nie powoduje także zwiekszenia koercji. Zarówno krzem jak i bor maja tendencję do pozostawania w warstwie tworzącej produkty korozji w postaci boranów i krzemianów. Zastępowanie boru krzemem sprzyja poprawie odporności korozyjnej stopu. Jeżeli przyjąć, że pasywacja amorficznych stopów Fe78Si9B13 i Fe73.5Si13.5B9Nb3Cu1 uzależniona jest stosunkiem stężenia krzemu do sumy stężeń krzemu i boru $(\frac{Si}{Si+B})$ [58] można się spodziewać, że większa odporność na korozję będzie cechować amorficzny stop Fe_{73.5}Si_{13.5}B₉Nb₃Cu₁ $\left(\frac{\text{Si}}{\text{Si+B}}=0,6\right)$ w porównaniu do stopu Fe₇₈Si₉B₁₃ $\left(\frac{\text{Si}}{\text{Si+B}}=0,4\right)$. Ważnym dodatkiem stopowym do nanokrystalicznych stopów na osnowie żelaza, którego obecność przyczynia się do poprawy odporności na działanie czynników korozyjnych, jest niob. Działa on stabilizująco na fazę amorficzna tej grupy stopów. Podczas pierwszego etapu krystalizacji pierwotnej zachodzi dyfuzja Nb z frontu krystalizacji do amorficznych obszarów. Ponieważ współczynnik dyfuzji niobu jest niewielki, niob hamuje rozrost powstających obszarów krystalicznej fazy α -Fe(Si). Niob jest pierwiastkiem bardziej elektrododatnim (wartość potencjału w szeregu napięciowym około +0,336 V względem NEK) od żelaza (-0,44 V względem NEK), może więc działać na poprawę odporności korozyjnej poprzez przesunięcie potencjału korozyjnego stopu w stronę wartości bardziej elektrododatnich. Podobnie na poprawę odporności korozyjnej wpływa dodatek miedzi, której potencjał względem NEK wynosi +0,04 V (w 3% roztworze wodnym NaCl) [48, 59]. Zaznaczyć należy, że trudne jest jednoznaczne oddzielenie indywidualnych wpływów tych pierwiastków na odporność korozyjną, zwłaszcza gdy badany stop jest stopem wieloskładnikowym, jak w przypadku Fe_{73.5}Si_{13.5}B₉Nb₃Cu₁.

Technika elektrochemicznej spektroskopii impedancyjnej (metoda zmiennoprądowa) dostarczyła danych na temat mechanizmu korozji badanych stopów [52-54, 60-67].

W oparciu o uzyskane wyniki badań impedancyjnych podjęto próbę opracowania modeli układów elektrycznych, które opisują zjawiska zachodzące na granicy rozdziału faz powierzchnia stopu/elektrolit oraz próbę określenia mechanizmu korozji stopów Fe₇₈Si₉B₁₃ i Fe_{73,5}Si_{13,5}B₉Nb₃Cu₁ o różnych strukturach. Dla badanych stopów zależnie od ich struktury i parametrów środowiska korozyjnego (tabl. 9) wyróżniono następujące mechanizmy: kontrolowany szybkością przeniesienia ładunku, kontrolowany szybkością przeniesienia masy i mieszany.

Tablica 9. Zestawienie rodzajów mechanizmów korozji stopów $Fe_{78}Si_9B_{13}$ i $Fe_{73,5}Si_{13,5}B_9Nb_3Cu_1$ wyróżnione w badaniach impedancyjnych

		Rodzaj mechanizmu			
Rodzaj stopu	Struktura stopu	Rodzaj roztworu korozyjnego			
		0,5 M Na ₂ SO ₄	0,5 M NaCl		
	amorficzna	А	А		
$\mathrm{F}_{78}\mathrm{Si}_{9}\mathrm{B}_{13}$	amorficzna po relaksacji strukturalnej	А	А		
	nanokrystaliczna faza α-Fe(Si) + amorficzna osnowa	А	С		
	amorficzna	А	А		
Fe72 5Si12 5BoNb2Cu1	amorficzna po relaksacji strukturalnej	А	В		
- 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990	nanokrystaliczna faza α-Fe(Si) + amorficzna osnowa	С	С		

Mechanizm korozji kontrolowany szybkością przeniesienia ładunku przez granicę faz wyznaczoną przez powierzchnię stopu i roztwór korozyjny jest charakterystyczny bez względu na strukturę stopu Fe₇₈Si₉B₁₃ oraz dla stopu Fe_{73,5}Si_{13,5}B₉Nb₃Cu₁ o strukturze amorficznej i amorficznej po relaksacji strukturalnej, które badano w 0,5 M Na₂SO₄. Korozja elektrochemiczna w 0,5 M roztworze NaCl stopu Fe₇₈Si₉B₁₃ o strukturach amorficznej i amorficznej po relaksacji strukturalnej oraz stopu Fe_{73,5}Si_{13,5}B₉Nb₃Cu₁ o strukturze amorficznej po relaksacji strukturalnej oraz stopu Fe_{73,5}Si_{13,5}B₉Nb₃Cu₁ o strukturze amorficznej po relaksacji strukturalnej prowadzonej w przedziale temperatury od 250°C do 400°C, jest również kontrolowana szybkością przeniesienia ładunku. Mechanizm kontrolowany szybkością transportu masy stwierdzono dla stopu Fe_{73,5}Si_{13,5}B₉Nb₃Cu₁ o strukturze amorficznej po relaksacji strukturalnej przeprowadzonej w zakresie temperatury od 425°C do 475°C, który badano w 0,5 M roztworze NaCl. Mechanizm mieszany korozji elektrochemicznej był typowy dla nanokrystalicznego stopu Fe₇₈Si₉B₁₃ badanego w 0,5 M roztworze NaCl oraz dla nanokrystalicznego stopu Fe_{73,5}Si_{13,5}B₉Nb₃Cu₁ badanego zarówno w roztworze chlorków jak i siarczanów.

Specyfika preparatyki i pomiarów metodą impedancyjną uniemożliwiają wykorzystanie próbek po badaniach korozyjnych do badań magnetycznych, dlatego w celu określenia zmian własności magnetycznych stopy poddano długotrwałemu działaniu środowiska korozyjnego [68-70].

Analizowano zmiany własności magnetycznych, przeprowadzone za pomocą magnetometru wibracyjnego VSM, takich jak: koercja, indukcja nasycenia i pozostałość magnetyczna, badano w funkcji wytworzonej struktury w pierwotnie amorficznych taśmach stopów oraz w funkcji rodzaju środowiska korozyjnego, w którym eksponowano taśmy przez okres 15 dni, badając próbki wycięte z taśm w kierunku wzdłużnym i poprzecznym (tabl. 10 i 11). Najlepsze własności magnetyczne dla taśm stopu Fe₇₈Si₉B₁₃ uzyskano po relaksacji strukturalnej w temperaturze 350°C (623 K) przez 1 godzinę, natomiast stopu Fe_{73,5}Si_{13,5}B₉Nb₃Cu₁ po krystalizacji pierwotnej w temperaturze 550°C przez 1 godzinę. Wpływ ośrodka korozyjnego na zmiany własności magnetycznych stopów Fe₇₈Si₉B₁₃ i Fe_{73,5}Si_{13,5}B₉Nb₃Cu₁ nie powodował jednoznacznie degradacji ich własności. Procesy korozyjne zachodzące na powierzchni taśm stopu Fe_{73,5}Si_{13,5}B₉Nb₃Cu₁ o strukturze amorficznej i amorficznej po relaksacji strukturalnej sprzyjają poprawie indukcji nasycenia B_s, co ma związek prawdopodobnie ze zmniejszeniem niepożądanych naprężeń, blokujących ruch ścian domen magnetycznych na powierzchni taśmy.

Stabilność własności magnetycznych stopów jest funkcją ich składu chemicznego, struktury i parametrów ośrodka korozyjnego. Z tych względów badanie zależności między zjawiskami korozji, składem chemicznym, strukturą i własnościami magnetycznymi amorficznych i nanokrystalicznych stopów ma więc określone znacznie dla materiałów już stosowanych jak i takich, które w przyszłości znajdą zastosowanie w budowie urządzeń elektrycznych i elektronicznych.

	Zastoso- wany roztwór koro-	Struktura stopu								
Kierunek badania		А	RS	RS	RS	RS	RS	Ν		
		Temperatura obróbki cieplnej, °C								
	zyjny		250	300	325	350	375	525		
Koercja H _c , A·m ⁻¹										
	brak	12,6	18,20	22,29	11,14	11,14	29,33	4053,38		
wzdłu- żny	Na ₂ SO ₄	14,44	16,84	_		30,88		4120,89		
,	NaCl	13,81	21,90		_	42,83		4101,86		
	brak	16,37	9,89	18,97	18,83	12,16	4,98	4147,09		
poprze- czny	Na ₂ SO ₄	17,39	13,48			14,74		4279,00		
	NaCl	21,83	20,57			32,34		4166,67		
			In	dukcja B _s ,	Т					
	brak	1,84	2,10	2,39	2,39	2,39	2,4	2,28		
wzdłu- żny	Na ₂ SO ₄	2,32	2,52			2,16		2,16		
,	NaCl	1,72	1,69		_	1,98		1,13		
	brak	2,86	1,92	2,12	2,11	2,28	2,29	2,46		
poprze- czny	Na ₂ SO ₄	2,80	2,67			2,16		1,71		
5	NaCl	2,16	1,92			1,90		1,35		
			Pozostałoś	ć magnety	czna B _r , T					
	brak	0,0099	0,012	0,014	0,007	0,007	0,0183	1,154		
wzdłu- żny	Na ₂ SO ₄	0,0011	0,018			0,022		0,955		
,	NaCl	0,0080	0,025			0,018		0,532		
	brak	0,0115	0,009	0,107	0,0146	0,0102	0,0086	1,222		
poprze- czny	Na ₂ SO ₄	0,0212	0,128			0,003		0,796		
CZ11y	NaCl	0,0170	0,021			0,022		0,662		

Tablica 10. Zestawienie własności magnetycznych stopu $Fe_{78}Si_9B_{13}$; A - struktura amorficzna,<math>RS - struktura amorficzna po relaksacji strukturalnej, N - struktura nanokrystaliczna

4. Korozja elektrochemiczna amorficznych i nanokrystalicznych stopów ...

Tablica 11. Zestawienie własności magnetycznych stopu $Fe_{73,5}Si_{13,5}B_9Nb_3Cu_1$; A - strukturaamorficzna, <math>RS - struktura amorficzna po relaksacji strukturalnej, N - struktura

Kierunek	Zastoso- wany roztwór koro-			Struktu	ra stopu						
		А	RS	RS	RS	Ν	Ν				
badania		Temperatura obróbki cieplnej									
	zyjny		250	400	450	500	550				
	Koercja H _c , A·m ⁻¹										
wzdłu- żny	brak	7,67	6,08	3,21	2,38	0,95	0,57				
	Na ₂ SO ₄	4,09	12,30		6,49	3,82	3,82				
	NaCl	4,12	11,93	_	6,89	3,88	3,95				
	brak	14,20	4,09	2,6	0,38	1,05	1,47				
poprze-	Na_2SO_4	25,01	4,34	_	25,60	6,20	4,45				
5	NaCl	26,11	4,42	_	28,6	6,47	4,50				
			Induk	cja B _s , T							
	brak	0,84	0,74	0,71	0,69	0,84	0,80				
wzdłu- żny	Na ₂ SO ₄	0,88	0,82		0,86	0,66	0,66				
zny	NaCl	0,88	0,85		0,85	0,62	0,66				
	brak	0,88	0,74	0,75	0,83	0,87	0,76				
poprze- cznv	Na ₂ SO ₄	0,91	0,74	_	0,84	0,73	0,70				
- J	NaCl	0,88	0,74	_	0,83	0,70	0,67				
		Р	ozostałość m	nagnetyczna	B _r , T						
	brak	0,0043	0,003	0,001	0,0008	0,0005	0,0003				
wzdłu- żny	Na ₂ SO ₄	0,0027	0,008	_	0,0085	0,0015	0,0015				
	NaCl	0,0024	0,008	_	0,0085	0,0017	0,0014				
	brak	0,0073	0,002	0,001	0,0005	0,0756	0,0001				
poprze- czny	Na ₂ SO ₄	0,014	0,003		0,006	0,0030	0,0017				
<i>j</i>	NaCl	0,0113	0,003		0,0053	0,0028	0,0011				

nanokrystaliczna